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BACKGROUND: Soil is the largest repository
of organic matter on land, storing ~1500 Gt
carbon, which is at least as much as the veg-
etation (~560 Gt) and atmosphere (~750 Gt)
combined. The turnover of this organic ma-
terial (the rate at which it enters and leaves
the soil) is governed by the most diverse com-
munity on Earth. By determining the rate and
biochemical pathway of organic matter pro-
cessing, fungi, bacteria, archaea, animals, and
protists regulate soil fertility, plant growth,
and the climate. Given their roles in regulat-
ing the exchanges of elements between ter-
restrial and atmospheric pools, the effective
management of this soil community is among
our most powerful weapons in the fight against
the global threats of biodiversity loss and cli-
mate change. However, despite the critical
importance of these organisms, the hyper-
diverse nature of local soil communities has
traditionally obscured efforts to identify gen-
eral global patterns. As such, environmental

factors have traditionally been used as proxies
to represent the variation in soil functioning
across landscapes. But it is the organisms—
not only the environment—that directly drive
the turnover of organic material. Given that
different organisms have varying impacts on
elemental cycling, exploring the functional
biogeography of soil communities is likely to
be critical for improving confidence in global
biogeochemical model predictions.

ADVANCES:Over the past decade, a growing
body of evidence highlights that regional dif-
ferences in the soil community drive consid-
erable variation in biogeochemistry. Just as
the transition from forests to grasslands drive
vast differences in ecosystem functioning, dif-
ferences in the structure of soil communities
can drive enormous variation in elemental
cycling. By expanding our horizons to see
beyond the complexity of local soil commun-
ities, ecologists have begun to identify gen-

eral patterns in the biomass, composition,
and diversity of soil communities. Despite
the immense diversity of these organisms, the
global soil community appears to be domi-
nated by a manageable number of groups,
which are likely to play a prominent role in
the regulation of soil biogeochemistry. The
metabolic activity and species richness of most

soil organisms generally
increase toward warm,
moist tropical regions,
where rapid elemental
cycling depletes soil car-
bon relative to the higher
latitudes. In addition, the

huge accumulation of organic matter stocks
in cold Arctic and sub-Arctic regions leads to
huge abundances of soilmicrobes and animals
at high latitudes. These global trends reveal
key insights into the biological mechanisms
that drive the distribution of organicmatter on
land as well as the vulnerability of different car-
bon stocks to future global change. Each new
layer of global ecological information reveals
distinct biogeographic patterns that provide
insights into the fundamental distribution
and dynamics of organic matter on land.

OUTLOOK:The field of soil ecology continues
to uncover critical mechanisms that govern
the turnover of organic matter at local scales.
But placing these mechanisms into context
necessitates that we continue to expand our
understanding of the global biogeography of
soil organisms. These communities can be
viewed at multiple levels of ecological resolu-
tion, starting from the biomass of overall com-
munities, which can then be divided into
different functional groups, taxa, and functional
traits. As we move down this list, we gain
mechanistic detail at the expense of predictive
understanding. While we continue to refine
our detailed understanding of microbial taxa
and trait compositions, we also need to step
back to characterize the biomass distribu-
tions of the major functional groups of soil
organisms, which reflect considerable differ-
ences in biogeochemical processing rates. As
we generate this global ecological data, sen-
sitivity analyses will then be necessary to
identify the mechanisms that are most crit-
ical for improving biogeochemical model per-
formance. These insights have the potential
to improve predictions of soil fertility, plant
production, and the climate. Ultimately, this
emerging perspective of the most diverse and
abundant community on land will provide
fundamental insights into the organization
of life on Earth.▪
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Latitudinal trends in organic matter across terrestrial ecosystems. (A) The latitudinal
patterns of terrestrial carbon stocks, both aboveground plant biomass (green) and soil carbon
stocks (brown). (B) The same latitudinal trend in soil microbial biomass, revealing similar
patterns to that observed in soil carbon. (Data sources are provided in Fig. 2 in the main text.)
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Soil organisms represent the most biologically diverse community on land and govern
the turnover of the largest organic matter pool in the terrestrial biosphere. The highly
complex nature of these communities at local scales has traditionally obscured efforts to
identify unifying patterns in global soil biodiversity and biogeochemistry. As a result,
environmental covariates have generally been used as a proxy to represent the variation in
soil community activity in global biogeochemical models. Yet over the past decade,
broad-scale studies have begun to see past this local heterogeneity to identify unifying
patterns in the biomass, diversity, and composition of certain soil groups across the globe.
These unifying patterns provide new insights into the fundamental distribution and
dynamics of organic matter on land.

T
he global soil community is central to the
functioning of our planet. The countless
species that constitute this community pro-
cess all terrestrial organic material and
influence every aspect of global biogeo-

chemistry (1, 2). By governing the uptake and
release of the major elements on land, these
organisms govern the fertility of terrestrial eco-
systems and the composition of our atmosphere.
Changes in the rate of this organic matter pro-
cessing are a prominent control on the rate of
climate change (3, 4). Understanding soil com-
munities across the globe is critical for predicting
future changes in plant productivity, atmospheric
composition, and the climate.
A detailed understanding of biogeochemical

cycling at any location on Earth requires quan-
titative information about the organisms that
drive elemental cycling (humans, plants, and soil
organisms) and the environmental conditions
(climate, soil physiochemical characteristics, and
topography) that regulate their activity. There
have been many quantitative models that de-
scribe the global variation in all these biotic
and abiotic factors, but unifying global patterns
in soil organisms have traditionally been ob-
scured by the local variability of soil commun-
ities. Yet over the past decade, an explosion of
technological advances has begun to facilitate

a global perspective that allows us to see past
the apparent idiosyncrasy of local-scale studies
(5–8). By providing a predictive understanding
of the composition and activity of these com-
munities, this perspective is beginning to trans-
form our understanding of global biogeochemistry
under current and future climate scenarios (5–8).
Here, we review the recent advances in our

understanding of global soil communities and
their role in governing the biogeochemistry of our
planet. First, we describe the dominant drivers
of the variation in soil community functioning,
which determine the patterns of soil organic
matter (SOM) turnover across the globe. Sec-
ond, we summarize the hierarchy of approaches
that have emerged to characterize global soil
communities, each of which provides funda-
mental insights into the structure of life on
Earth. Third, we discuss the different approaches
by which soil ecological information is currently
being incorporated into biogeochemical models,
and we outline how these modeling approaches
can alter our understanding of SOM turnover.
Last, we synthesize this information to highlight
the future research avenues that are urgently
needed to enhance our understanding of global
soil biogeography and biochemistry.

Functioning of global soil communities

Soil stores the majority of organic matter in the
terrestrial biosphere, with more carbon than
vegetation and the atmosphere combined (9).
Plants are responsible for fixing this carbon
from the atmosphere, but heterotrophic soil
organisms—including bacteria, fungi, archaea,
protists, and animals—determine the turnover
of this organic matter pool. The turnover of
SOM is governed by an array of ecological pro-
cesses that are responsible for the uptake and
release of carbon and nutrients in various dif-
ferent forms. These include many specialist

functions such as the production and uptake
of methane (methanogenesis and methano-
trophy) or different nitrogen-containing com-
pounds (such as nitrification, denitrification,
and nitrogen fixation) that can only be performed
by certain microbial groups. It also includes gen-
eralist functions such as the mineralization of
carbon into inorganic forms (primarily CO2),
which is performed by all organisms across the
globe (Fig. 1A). Generating a predictive under-
standing of the global variation in these soil
ecological functions is critical for parameteriz-
ing global biogeochemical models to predict
future climate conditions.

Extrinsic drivers of soil
metabolic activity

The traditional paradigm of SOM turnover states
that the functioning of soil communities is gov-
erned primarily by climate conditions, which
regulate the metabolic activity of soil commun-
ities, and by plant characteristics, which determine
the amount and quality (or chemical composition)
of organic matter inputs (10, 11). Despite ongoing
debate about the relative importance of climate
and plant traits in governing variation in SOM
turnover rates across landscapes and continents
(10, 12), contemporary temperature and mois-
ture consistently emerge as prominent predic-
tors of carbon and nitrogen mineralization at
the global scale (13–15). Specifically, the highest
activity levels are consistently found in warm,
moist regions, with limited carbon and nitrogen
mineralization rates in cold or dry ecosystems
(13, 15). These patterns are similar for terrestrial
nutrient uptake, with increased rates of carbon
fixation (by plants) (16) and nitrogen fixation (by
soil microbes) (17) in warm, moist regions. Yet,
the increased rates of organic matter turnover in
these regions leads to the depletion of organic
matter in most warm, tropical ecosystems, rel-
ative to those higher latitudes (Fig. 2A). The
global variation in turnover rates determine the
fundamental distribution of organicmaterial on
land. Because cold or waterlogged conditions
restrict respiratory carbon losses to a greater ex-
tent than primary production, the greatest accu-
mulation of soil carbon stocks occurs in wetlands
and in Arctic and sub-Arctic soils (Fig. 2A) (18).
In combination, the full range of contempo-

rary climate, plant, and soil characteristics ex-
plain ~20 to 50% of the variation in nitrogen
and carbon mineralization rates across terres-
trial ecosystems (13–15), revealing patterns that
match the global variation in litter mass loss
and decomposition (Fig. 2B) (19). The strength
of these relationships is both a blessing and a
curse for our efforts to represent soil community
functioning in global biogeochemical models. By
characterizing the global Q10 (temperature co-
efficient) sensitivity of soil respiration, which is
generally found to be between 1.4 and 2 (20, 21),
we can use temperature as a proxy to represent
much of the variation in SOM turnover rates in
global biogeochemical models. However, this re-
liance on these broad-scale environmental corre-
lations may have obscured efforts to represent
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the structure and function of the soil community,
which is expected to account for a substantial
amount of unexplained variation in elemental
processing rates across the globe (11, 22).

Intrinsic capacity of the soil community

Although the contemporary climate determines
the physiological activity of soil organisms, the
functional potential is ultimately determined
by the composition of those soil communities
(23, 24). Shaped by distinct combinations of
environmental and historical events, this “soil
community context dependency” can explain a
considerable proportion of the variation in soil
functioning (23, 24). Different soil communities
process organic matter at very different rates
and can fundamentally change the relationship
between extrinsic environmental drivers and
soil community functioning (Fig. 3C) (11, 25, 26).
For example, the moisture sensitivity of com-
munities assembled under wet tropical environ-
ments can be two to four times higher than in
communities fromdrier conditions,when assayed
under identical conditions (26, 27). Similarly,
under identical conditions, communities assem-
bled under historically warm, tropical conditions
have a higher temperature sensitivity than those
from temperate or boreal regions (Fig. 3) (28).
These predictable functional legacies are tied to
the abundance and composition of selected mi-
crobial taxa (27, 29); communities selected for
under “optimal” growing conditions are selected
for high functional performance rather than
stress tolerance or survival mechanisms that
are widespread in harsh environments (29).
Predictable environmental legacies are not

only shaped by the historical climate but also by
changes in the ecosystem structure. After changes
in vegetation type—through land conversion (30),
invasive species (31), or natural disturbance
events (32)—soil communities can retain the
functional characteristics of former ecosystems.
How long these legacies can persist remains an
important research question because long-term
experiments are relatively rare. But the few long-
term reciprocal transplant experiments suggest
that soil microbial community composition and
function can persist for several years (26), and
even decades (33), although such long-term ef-
fects are certainly not universal (34). This knowl-
edge of the soil community context is now being
applied in an agricultural context by selecting
microbial communities that can promote nitro-
gen mineralization and plant productivity (35).
In addition, the introduction of entire soil com-
munities from natural ecosystems can also
promote the successful restoration of native
vegetation in degraded regions, with high spec-
ificity to steer the plant community develop-
ment toward different target communities (36).
Although these soil community attributes can-
not explain all of the variation in soil func-
tioning, the signal of soil community effects
appears to be consistently detectable across
soils. This highlights that the functioning of
terrestrial soils is governed not only by the
contemporary environmental conditions but
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Fig. 1. The functioning of soil biota. Soil organisms span all domains of life. (A) The phylogenetic
distribution of 12 common functions that are performed by soil organisms. Colored blocks indicate the
performanceof a particular functionbyat least one species in the respective taxonomic group.Colors on the
branches of the phylogenetic tree indicate the different kingdoms. Phylogenetic relationships are according
to Hug et al. (113). (B) A hierarchy of approaches used by ecologists to characterize soil communities.
Here, fungi are used as the example, but the same hierarchy exists for all soil organism groups.
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also by the intrinsic properties of the soil com-
munity that has been assembled in that location.

Characterizing the global
soil community

To generate a predictive understanding of the
soil context dependency, ecologists have begun
to characterize the patterns of soil commun-
ities across the globe. Given their relevance for
governing global biogeochemistry, character-
izing these communities has the potential to
explain much of the uncaptured variation in
SOM turnover rates across the globe. Four dis-
tinct research areas have emerged to character-
ize global soil communities, describing patterns
in (i) biomass and abundance, (ii) functional
group composition, (iii) taxonomic diversity and
composition, and (iv) functional trait expression.
We discuss how each of these four categories
yield complementary insight into the functional
biogeography of global soil communities.

Biomass and abundance of
soil community

At the highest level of ecological organization,
the total abundance of biological cells in a re-
gion ultimately places a fundamental limit on
the rate of SOM turnover in soil (37, 38). The
biomass or abundance of important soil organ-
isms can thus provide initial insights into the
baseline functional potential of a soil commu-
nity. In terms of biomass, fungi dominate global
soil communities, with an approximate global
biomass of 12 Gt carbon (C) (39). This value is
nearly double that of soil bacteria (7 Gt C), with

soil animals and archaea storing ~2 and 0.5 Gt C,
respectively (39). Although these groups vary
in their processing rates, the spatial distribution
of this biomass is a critical ecosystem char-
acteristic that places a biophysical constraint
on the rates of SOM turnover across the globe.
Although the distribution ofmost aboveground

metazoan biomass is governed primarily by cli-
mate conditions, the distribution of belowground
microbial biomass is shaped primarily by edaphic
characteristics. At the global scale, both fungal
and bacterial biomass generally increase in re-
gions with high SOM content and lower pH
(Fig. 4A) (8). Both show the opposite trend to
aboveground plant biomass, with the greatest
abundances in Arctic and sub-Arctic regions
(Fig. 4A) (40, 41). Following this trend, the most
abundant soil animals—nematodes—also show
the highest abundances at high latitudes, where
cold conditions have caused the accumulation
of huge SOM stocks (42). Regional contingencies
in these patterns contrast with these general
latitudinal trends and lend support for the
mechanisms driving these broad-scale patterns.
For example, the accumulation of organic mat-
ter in waterlogged tropical peatlands (for ex-
ample, Peruvian Amazon and Bornean rain
forest) or in high-altitude soils (for example,
the Rocky Mountains or Himalayan Plateau)
can lead to high microbial and animal biomass
in certain low-latitude regions (Fig. 4A).
The general trend of increasing soil organism

biomass with latitude seems paradoxical, high-
lighting the negative relationship between bio-
mass and SOM turnover rates at a global scale

(Fig. 4). This trend contradicts the results from
local-scale studies, which consistently highlight
the positive influence of microbial biomass on
nutrient decomposition and respiration rates
(37, 38). Yet, the negative global-scale relation-
ship is likely to be mediated by global variation
in climate because the low metabolic activity of
heterotrophic organisms in cold regions drives
the accumulation of large organicmatter stocks,
which support high abundances of soil biota
with slow metabolic rates (42). Thus, although
the relationship between soil community biomass
and SOM turnover is negative at a global scale,
this relationship flips when controlling for the
effects of temperature and soil moisture (Fig.
4B). That is, under equivalent environmental
conditions, larger communities generally drive
faster SOM turnover, a pattern that underpins
much of the soil community’s context depen-
dency at a global scale (Fig. 4B).

Composition of functional groups

To generate a more detailed understanding of
soil functioning, we can identify how soil com-
munity biomass is partitioned between differ-
ent functional groups. Given their particular
trait combinations, different functional groups
(or guilds) are often filtered into distinct envi-
ronments that characterize thebiochemical cycling
in those regions (Fig. 1B). This is especially ap-
parent within specialized microbial commun-
ities that define the biogeochemical processing
in certain ecosystems, such as the methanogenic
archaea that dominate wetland soils. Despite
covering less than 6% of the land surface, these
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Fig. 2. Bulk soil community functioning. (A and B) The global patterns of (A) soil carbon storage [data from Hengl et al. (18)] and (B) heterotrophic
respiration [data from Hashimoto et al. (14)]. Generally opposing latitudinal trends highlight that carbon stocks in soil are high in regions with slow carbon
mineralization by heterotrophic organisms. (C) The resulting latitudinal patterns of terrestrial carbon stocks, both aboveground living plant biomass
(green) [data from Gibbs et al. (114)] and soil carbon stocks (brown) [data from Hengl et al. (18)]. (D) The same latitudinal trend in soil microbial
biomass, revealing similar patterns to that observed in soil carbon [data from Xu et al. (41)]. Although this dataset is expected to over-represent the scale
of total carbon stocks in some regions, the SoilGrids data accurately describe the spatial distribution of soil carbon across the globe.
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anaerobic soils contribute 30 to 40% of the
global methane emissions (0.2 Gt CH4 year−1)
(43). These ecosystems also support the largest
global communities ofmethanotrophic archaea,
which consume a large fraction of these emis-
sions (9). As such, these soil communities make
wetland ecosystems functionally and biochem-
ically distinct from other terrestrial soils.
In contrast to the specialist processes, many

generalist functions such as carbon and nitrogen
mineralization are broadly distributed across all
taxa in all terrestrial soils (Fig. 1A). Yet given the
structural, morphological, and biochemical dif-
ferences between the major kingdoms of soil
organisms (Fig. 1B), fungi, bacteria, archaea,
protists, and animals vary considerably in their
impacts on SOM turnover rates. As the most
abundant soil organisms in soil, the relative

biomass of fungi versus bacteria (F:B ratio) has
received considerable attention at broad spatial
scales. Fungi-dominated systems are generally
associated with slow decomposition of more
chemically recalcitrant organic matter (8, 44),
supporting the growth of slow-growing plants
(such as trees). By contrast, grasslands are typ-
ically dominated by bacteria, which drive rapid
nutrient cycling that promotes the existence
of fast-growing, nutrient-rich plant species.
Evenwithin these ecosystem types, the F:B ratio
increases with the C:N ratio of soil. Therefore,
the proportion of fungi is likely to increase with
soil C storage (45) and lower gross nitrogen
mineralization rates (46), driving a general
trend of increasing fungal dominance toward
the high-latitude regions with larger SOM stocks
(8). Despite considerable research efforts to

disentangle the drivers of F:B ratios across land-
scapes, we still lack a spatially explicit charac-
terization of these different functional groups
at a global scale.
Within these broad organismal groups, soil

organisms can be delineated into key functional
groups (or guilds) that drive independent soil
functioning (Fig. 1B). One major functional
group distinction that has received attention
at the global scale is that between the dominant
types of symbiotic fungi.Mycorrhizal fungi are a
ubiquitous component of the soil microbiome,
forming symbiotic associations with the roots of
most plants (47). Twomajor types of mycorrhizal
fungi—arbuscular mycorrhizal (AM) and ecto-
mycorrhizal (EM) fungi—dominate most terres-
trial soils. Because AM fungi rely on inorganic
forms of nitrogen that have beenmineralized by
free-living decomposers (48), plants that form
AM symbioses tend to dominate “fast” nitrogen-
cycling ecosystems. By contrast, the larger
networks of EM fungi can degrade and acquire
organic forms of nitrogen directly (49, 50) and
are predicted to dominate “slow” nitrogen-
cycling ecosystems with low levels of inorganic
nutrients (47, 48). With slow rates of SOM turn-
over, the proportion of AM fungi in soil is ex-
pected to increase the turnover of organicmatter
stocks across the global forest system (51–53).
Structural differences between thesemycorrhizal
groups also influence the ecosystem-level re-
sponses to global change because EM-dominated
plants exhibit more sustained increases in pro-
ductivity under elevated CO2 (54). By taking
advantage of the associations betweenmycorrhizal
types and symbiotic tree species, Steidinger et al.
(55) generated quantitative global maps of mycor-
rhizal association type across the global forest
system. This revealed that although AM fungi
dominate ~95% of tree species, these commun-
ities are restricted to lower-latitude tropical and
subtropical soils, with EM dominating a larger
proportion of trees in temperate and boreal
regions with slower SOM turnover (55). Given
differences in the nutrient processing rates of EM
andAM fungi, these quantitative relationships can
provide direct insights into the spatial patterns
of SOM processing across the globe (Fig. 4) (55).
By characterizing the proportional represen-

tation of broad kingdoms (such as fungi versus
bacteria) or functional groups (such as EM ver-
sus AM fungi) across terrestrial soils, ecologists
can reveal valuable mechanistic insights into
the functioning of entire ecosystems. Both ex-
amples (F:B and AM:EM) represent differences
between fast and slow cycling, which can reflect
the relative differences in fast and slow energy
channels within the soil community (45). The
importance of distinct fast versus slow energy
channels has been recognized for decades in soil
ecology (56, 57), providing critical insights into
the stability of soil communities and the turn-
over SOM at local scales. Generating spatially
explicit data to reflect the relative abundances
of different functional groups across the globe
can allow the incorporation of such mecha-
nisms into global-scale models (55). Yet despite
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Fig. 3. Historical context determines the nature of the relationship between climate and soil
function. Context dependency of soil community function can be explained by historical environment,
which may be standing in for differences in microbial community composition. (A and B) How
different soil communities can exhibit different sensitivities to the environment and how this may
be linked to historical environmental conditions, potentially standing in for difference in microbial
community composition. (C) An example of this phenomenon, in which litter respiration is
differentially sensitive to temperature across a latitudinal gradient. (D) Variation in the slope of the
temperature-respiration relationship (temperature sensitivity) can be explained by differences in
historical climate (24). (E) The response of soil enzyme activity (natural log transformed) to soil
moisture across a historical precipitation gradient in central Texas, USA. (F) The maximum activity
parameter, referred to as Vmax, at the site level is linked to historical rainfall [Averill et al. (52)].
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the explanatory power of these functional group
descriptions, few studies have attempted to ex-
plore the relative abundances of other major
soil organisms (animals versus protists versus
archaea) at the global scale. In addition, each
of these kingdoms can be further divided into
functional groups according to differences in
body size (such as microinvertebrates versus
macroinvertebrates), trophic status (such as
predatory versus herbivorous invertebrates),
successional stage ( such as early versus late-
stage wood decomposers), biochemical pathway
(such as nitrifying versus denitrifying bacteria),
or resource use ( such as litter versus wood de-
composing fungi) (Fig. 1B). Generating quanti-
tative, spatially explicit information about the
relative abundances of these major functional
groups at a global scale will be critical for char-
acterizing the ecological status of terrestrial soils.

Taxonomic composition

Different species within functional groups can
vary widely in their rates of SOM processing.
Hence, dividing the biomass of these functional
groups into different taxa can provide a more
refined understanding of soil community func-
tioning. DNA metabarcoding is now the most
widely adopted strategy to categorize the rela-
tive abundance of different taxa in soil (7, 8). In

species richness, the prokaryotes (bacteria and
archaea) are the most diverse components of
the soil community, followed by fungi, and then
protists and animals, although the majority of
all groups remain uncharacterized (58). Gener-
ally, it has been assumed that the global richness
of most soil taxa follows the same trend as
aboveground taxa,with increasing richness toward
warm, moist tropical regions (6, 59–61). How-
ever, recent studies suggest that this latitudinal
trend may not be as consistent as in plants;
bacterial richness may peak in midlatitude soils
with approximately neutral pH and relatively
high soil carbon:nitrogen ratio (8). These diver-
sity trends may also differ for functional groups
that are biogeographically separated. For example,
the richness of EM fungi peaks in high-latitude
forests that support the greatest proportion of
EM trees (60), whereas AM diversity peaks in
tropical regions where this functional group is
most prevalent (62). Untangling the interacting
drivers of soil community diversity can reveal
how soil diversity influences the structure and
functioning of terrestrial ecosystems at a global
scale (63).
Rather than focusing on the number of spe-

cies, efforts to understand the relative abundance
of taxa in soil can provide greater insights by
identifying which taxa dominate the soil com-

munity. Given the overwhelming number of
soil-dwelling species, this has been a daunting
challenge. Growing evidence now suggests that
soil communities are highly uneven and domi-
nated by a few cosmopolitan species that char-
acterize the global community. In a global analysis
of bacterial communities, only 500 species were
found to dominate the global soils, most of which
fell into the Proteobacteria, Actinobacteria, Acid-
obacteria, and Planctomyces (7). By clustering the
dominant bacterial taxa, Delgado-Baquerizo et al.
(7)were able to visualize the spatial patterns of four
major types of bacterial community that charac-
terize different ecoregions across the globe. Similar
levels of hyperdominance have been detected
in broad-scale communities of mycorrhizal fungi
(64), archaea (65), and invertebrates (66). Once
the functional capacity of these dominant taxa
has been characterized, these cosmopolitan spe-
cies may provide a valuable research avenue for
characterizing the functional biogeography of
soil communities (7).
The soil community includes many rare and

endemic species, and there has been a focus on
describing the “dissimilarity” in the relative
abundance of taxa across soils. Predicting global
patterns in this beta diversity remains highly
challenging because levels of endemism are
high among soil fauna (67). However, at higher
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Fig. 4. Quantitative global maps of soil biota and functional group
composition can help us to contextualize our understanding
of global carbon turnover. (A) The global patterns in soil microbial
carbon [data from Xu et al. (41)]. (B) The negative correlation
for this microbial biomass and soil heterotrophic respiration at a global
scale (red line), an effect that flips when controlling for the effects of
climate (light blue) [respiration data from Hashimoto et al. (14)]. (C) The

global patterns in the ratio of arbuscular versus ectomycorrhizal (AM:EM)
fungi [data from Steidinger et al. (55)]. (D) The positive correlation
between soil respiration and the proportion of AM fungi that dominate
tropical regions, an effect that is reversed for the EM fungi that dominate in
higher latitudes. It should be highlighted that these correlations are
not causative, but they highlight the context-dependency of soil com-
munities across the globe.
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phylogenetic levels (such as at the family or
phylum levels), there is enough representation
across samples to detect continuous spatial
variation. Edaphic and biotic characteristics
consistently emerge as dominant factors that
shape the composition of bacterial commun-
ities at broad spatial scales (7, 8, 44, 68–70).
Soil pH consistently explains a large propor-
tion of the variation in bacterial phyla across
studies, with increasing pH corresponding with
a greater proportion of Actinobacteria and Bac-
teroides and the relative loss of Acidobacteria
species (68). In addition, as we continue to gen-
erate global maps of vegetation indices (16), we
are beginning to recognize the dominant role of
plant biomass and ecosystem type (grassland or
forest) in shaping the distribution of dominant
taxa (7, 71). Yet, the signal of climate is still ap-
parent, particularly in arid conditions, which
give rise to taxonomically distinct communities,
promoting a-Proteobacteria and reducing Acid-
obacteria and Verrucomicrobia (70). In contrast
to the prokaryotes, the signal of environmental
filtering in shaping patterns of eukaryotic com-
munities may be slightly weaker (67, 72) because
spatial distance alone explains >30% of the dis-
similarity in fungal community composition at
broad scales (67, 72). Yet with enough samples
across the globe, the patterns of niche filtering
are beginning to emerge (8), as environmental
variables including evapotranspiration and soil
C:N drive consistent variation in fungal com-
munity composition (6, 8). Reflecting these dif-
ferences in edaphic characteristics, the signal
biotic filtering is particularly apparent in fungal
communities because the shift from grasslands
to forest ecosystems drives a strong increase
in the abundance of Basidiomycota, relative
to Ascomycota (71). Similarly, the composition
of soil animals (58, 66) and protists (73) appear
to be structured primarily by soil moisture, C:N
concentrations, and vegetation types, driving
fundamentally different biogeographic trends
than those observed in soil bacteria (73). With
somany species across all groups, we do not yet
have a clear synthesis to describe the taxa existing
at any given location. But conceptual advances
in this field have the potential to transform our
understanding of SOM turnover if we can char-
acterize the functional potential of those taxa.
A key challenge is to generate quantitative in-
formation, which will require scaling this rela-
tive abundance information with estimates of
total biomass at each location.

Functional traits

At the finest level of understanding, soil com-
munities can be characterized on a truly con-
tinuous scale by examining the expression of
functional traits (Fig. 1B). The functioning of a
community is ultimately governed by the traits
expressed by individuals and not their taxonomic
identity per se. Functional traits can include
structural, morphological, biochemical, or ge-
netic characteristics of organisms, which deter-
mine the performance of individuals in time
or space. Soil ecology has been founded on the

measurement of countless organismal charac-
teristics that describe the functioning of indi-
viduals in simplified communities. Over the past
decade, there has been a resurgence in these trait-
based approaches to characterize the coexistence
and functioning of individuals within complex
communities (74–76). As such, the emergence
of trait-based approaches at the global scale can
provide tangible linkages between the bio-
geography and functioning of global soil com-
munities (74–76).
Molecular approaches—such as metagenom-

ics (estimating microbial composition and ge-
nomic capacity), metatranscriptomics (estimating
gene expression), and metaproteomics (estimat-
ing protein synthesis)—can provide insights into
the functional profile of entire soil communities.
Few studies have begun to characterize the global
trends in these community-level traits, and our
global understanding is coarse. The expression
of most functional genes in soil differs between
biomes, driven by interactive effects of climate
and edaphic characteristics (77, 78). In particu-
lar, communities in arid environments tend to
exhibit distinct functional characteristics (77) be-
cause genes related to carbohydrate, iron, and
phosphorus metabolism tend to be under-
represented in deserts relative to forests and
grasslands (78). As the most abundant compo-
nents of the soil, fungi and bacteria also appear
to dominate the functional profile of most soils.
For fungi, these broad-scale patterns in func-
tional trait expression are predominantly linked
to differences in soil carbon-to-nitrogen ratio
and soil moisture (8, 67). By contrast, the pres-
ence (not necessarily expression) of bacterial
functional is predominantly governed by soil
pH (8, 77), so that bacterial functioning largely
mirrors global patterns in richness and com-
munity composition. Yet despite the prominent
control of edaphic characteristics in shaping
the composition of functional genes at a global
scale, the abundance of bacterial proteins ap-
pears to match the global patterns in climate,
with higher abundance of most proteins in
warm, moist regions with rapid SOM turnover
(79). Similar to the “bulk soil community func-
tions,” these community-level estimates are
beginning to reveal broad-scale patterns in the
functional potential of entire communities
but do not enable the direct measurement of
individual-level traits that are necessary for a
mechanistic understanding of soil community
assembly.
At the finest level of mechanistic understand-

ing, the direct measurement of traits expressed
by individual organisms can highlight the trade-
offs that underpin soil community coexistence
and performance in any given region (74). Broad-
scale trait measurements on individuals have
begun to reveal basic mechanisms that hold
across fungi and bacteria, in which trade-offs
in the expression of traits associated with stress
tolerance and competitive dominance determine
the relative activity levels of taxa across broad
environmental gradients (76, 80). Moving from
tropical moist regions toward cold or dry ones,

traits associated with stress tolerance are ex-
pressed at the expense of competitive traits, a
mechanism that gives rise to clear functional
biogeographic patterns across continents (80).
These physiological traits also underpin the
nutrient processing rates of microbes because
stress-tolerance traits that are abundant in cold
or dry regions are expressed at the expense of
fast decomposition rates (75). These biogeographic
patterns in functional trait expression can pro-
vide fundamental insights into the variation in
SOM turnover rates across varying environmen-
tal gradients.

Biogeochemical modeling

Beyond providing insight into the structure of
the biosphere, a comprehensive understanding
of global soil communities will improve accu-
racy in global biogeochemical model predictions
(1). Although microbial processes are still largely
absent from global Earth systemmodels, the past
decade has revealed that incorporating even
the simplest of microbial features into biogeo-
chemical models can fundamentally alter long-
term projections of SOM turnover and C storage.
However, scaling such inference to the globe
hinges on our ability to first enhance the con-
fidence and precision in these projections, re-
quiring improved global-scale understanding of
the distribution and abundance of soil biota.
Here, we focus on outlining the different ap-
proaches currently being used to model soil
processes, and given the ongoing nature of such
efforts, we provide a simplified overview of the
differentmodel structures that would be readily
informed by global-scale soil ecological data.

Recent history of decomposition models

Despite the hypercomplexity of soil communities,
their representation in many Earth system mod-
els is relatively simple, in part because of a lack
of global-scale data, which is needed to build
and parameterize more complex models. Organic
matter decomposition in nearly all Earth system
models thus relies on linear, first-order decay
models (RothC, Yasso, Century, or similar ap-
proaches) (74, 75). In general, thesemodels have
three or four SOM “pools,” each corresponding
to conceptual categories of organic material by
fitting to decay curves observed in laboratory-
and field-based experiments, which are adequate
to fit decay curves observed in laboratory-based
experiments. Empirical decomposition rates
are then modified by environmental parameters
such as temperature, moisture, and clay content,
often leading to successful site-level modeling of
SOM stocks.
At the Earth system scale, model-based pre-

dictions of C dynamics are characterized by
large uncertainty, with a sixfold difference in
predicted SOM stocks in the fifth Coupled
Model Intercomparison Project (CMIP5) (81).
Because first-order models lack explicit repre-
sentation of the soil organisms that regulate
the size of SOM pools, these models typically
suggest that increased carbon inputs will lead
to increased SOM formation. Yet, long-term
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empirical studies demonstrate that concurrent
changes in microbial populations can negate
SOM accumulation under increased C inputs
(82, 83). This phenomenon is more easily cap-
tured with nonlinear models without needing
to invoke additional biogeochemical assumptions,
some of which have weak empirical support (1).
As such, explicitly representing different micro-
bial pools that regulate the processing of this
organic matter has emerged as a research focus
in the past decade, with the potential to trans-
form soil biogeochemical modeling. Nevertheless,
the flexibility of nonlinear models comes at the
expense of model simplicity because these more
complex models demand more precise empir-
ical data to avoid overfitting and ensure reliable
long-term projections (84).

Representing microbes in models

Nonlinear models with explicit microbial pools
are intended to represent the context-dependency
of different microbial communities. In many
ways, these models are similar to nonlinear
consumer-resource models, which have a long
history in ecology. Although a variety of model-
ing approaches exist for quantifying microbial
C dynamics,most assume that decay rates depend
on both SOM substrate and the catalyst pool
concentrations, which are proportional to micro-
bial biomass or enzyme activity (Fig. 5) (85).
Many of these global-scale microbial models are
motivated byMichaelis-Menten kinetics (86), in
which microbial decomposition rates saturate
as substrate availability or enzyme concentra-
tions rise (known as “forward” and “reverse”
kinetics, respectively) (87). Building on this
framework, Earth system models are incor-
porating increasing levels of microbial complex-
ity by explicitly representing various aspects of
microbial physiology (such as carbon-use effi-
ciency, substrate affinity, or microbial stoichiom-
etry) that determine the rate of C mineralization
or assimilation (88–90).
To further account for the complexity of the

soil C cycle, Earth system models have begun
to incorporate nonlinear microbial mediated
SOM feedbacks, which can better capture var-
iation in bulk soil functioning relative to single-
pool, first-order decomposition frameworks
(1, 91–97). For example, the latitudinal trend in
microbial biomass was captured by Wang et al.
(96) to improve estimates of global SOC dynam-
ics. Yet even in such approaches, the microbial
community is still typically represented as a
single, homogeneous pool, largely because of
a lack of broad-scale data linking composi-
tional differences to functioning. Some local-
scale models distinguish between different
microbial components—such as active versus
dormant biomass (98), fast versus slow cycling
(99), and resource specialists versus generalists
(100)—and these approaches appear to improve
predictions ofmicrobial C dynamics. By relating
these distinct microbial pools to empirically de-
fined functional groups, these models have the
potential to better capture patterns in SOM for-
mation across broad spatial scales. For example,

Sulman et al. (94) accounted for the strikingly
different C turnover rates between AM and EM
fungi by coupling mycorrhizal function with veg-
etative nitrogen demand (97). Along a gradient of
slower cycling EM trees and faster cycling AM
ecosystems, labile C additions stimulated the EM
communities to decompose unprotected SOM
pools and mine for N to a greater extent as com-
pared with the AM communities (94). Thus, SOC
losses were greater in the EM communities under
elevated CO2 conditions, highlighting how func-
tional group information can help Earth system
models represent complex environmental feed-
backs. Extending such approaches to free-living
microbial groups that reflect differences in
organic matter processing rates is an impor-
tant challenge.

The next generation—Representing
continuous variation in traits

As model frameworks are developed to repre-
sent the functionally distinct impacts of differ-
ent components of the soil community, the
direct incorporation of microbial trait infor-
mation represents the forefront of biogeochemical
modeling (Fig. 5). Most developments in this field
are occurring at the scale of process models rather
than Earth system models. The most common
method for incorporating microbial traits uses

taxonomic information to characterize special-
ist functions such as nitrogen fixation, nitrate
reduction, sulfate reduction, methanogenesis,
and methanotrophy (101). For example, the N
cycle is relatively tractable because the ther-
modynamic geochemical reaction pathways
and the microbial taxa that perform them are
well described (102, 103). There are exampleswith
other microbial functional groups—notably,
separation of iron and sulfate reducers and
acetogenic and hydrogenotropic methanogens
(104, 105)—but there remain sparse empirical
data to parametrize or test these models. In-
creasingly, studies are using a mixture of -omics
approach and traditional trait-based assays to
quantify how aggregate-level traits such as func-
tional gene expression, carbon use efficiency,
and enzyme production vary in response to
changing environmental conditions (1, 106–109).
By combining these experimental data with the-
oretical and empirical information about micro-
bial physiology, trait-based microbial models are
beginning to provide tangible predictions of how
microbial-mediated ecosystem processes, such as
decomposition or respiration, vary through time
and space (90, 110, 111).
As data on direct individual-level trait patters

becomes available at the global scale, we will be
able to represent important new mechanisms
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Fig. 5. Representing functional groups in spatially explicit biogeochemical models. In this
conceptual figure, we illustrate how global-scale functional information can be used to more
accurately model the different roles of soil organisms in governing biogeochemical processes.
In this example, a global map of the relative abundance of two functional groups of microbes (red
versus blue) is used to parameterize a spatially explicit model of soil carbon turnover. At each
location, the functional composition determines the relative sizes of two microbial biomass pools
(for example, AM versus EM fungi) that differ in their allocation to different enzymes (ENZ).
Incorporating functional data allows a single model to predict microbe-driven differences in
the breakdown of soil organic matter (SOM) into dissolved organic carbon (DOC) and in overall
soil respiration (rightmost arrows).
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that govern global SOM dynamics. However,
somewhat paradoxically, the incorporation of
microbial processes into biochemical models
can also increase uncertainty in model estimates
owing to corresponding uncertainty in the mi-
crobial derived model parameters (84). As we
increase the complexity of models, there will
always be a trade-off between model flexibil-
ity and simplicity. Until we can be sure that
new ecological mechanisms are necessary to
capture a significant proportion of unexplained
variation, increasing model complexity is always
likely to compromise overall performance. Espe-
cially when these mechanisms have limited em-
pirical support at the global scale, this extra
complexity can increase the risk of overparame-
terization and misrepresentation of complex
processes, which can seriously hinder model
performance. This fact highlights the urgent
need for model sensitivity analyses, to iden-
tify the level of ecological information that is
necessary to maximize model performance.

Pathways forward

With an ever-expanding technological toolkit,
the field of soil ecology continues to uncover
mechanisms that govern the biodiversity and
functioning of soil communities. But placing
these local findings into a broader context and
understanding the relevance of these mecha-
nisms require that we build on recent advances
to characterize the global biogeography of soil
communities. Only when we know the abun-
dance and metabolic activity of those organisms
in any location can we truly realize the relevance
of any process. After decades of pioneering soil
ecological research, we now have the ecological
data and statistical tools to generate a global
perspective of this integral, but previously un-
characterized, component of the terrestrial bio-
sphere. Ultimately, in order to build a consistent
global perspective, the major challenge for soil
ecologists will be to find simplicity and general-
ity in this highly complex belowground commu-
nity. As we move through the levels of ecological
detail (biomass, functional groups, taxa, and traits),
we gain mechanistic insight at the expense of
predictive clarity. With somany studies operating
at the level of taxonomic and trait-based detail,
this Review emphasizes the need to also step back
to characterize the global biomass patterns of the
major functional groups of soil organisms. Not
only can this biomass information explain much
of the variation in community-level functioning, it
is also necessary to scale and contextualize the
relative abundance of information collected in
more detailed taxonomic and trait-based analy-
ses. Much of the contemporary theory in soil
ecology is built on the compartmentalization of
different energy channels, which can improve
our understanding of ecosystem stability and
organic matter turnover (56, 57). Identifying the
relative abundance of the major organismal
groups (such as fungi, bacteria, animals, pro-
tists, and archaea), with distinct biogeochemical
processing pathways and rates, can be the first
step toward reflecting the relative contribution

of different energy pathways across global soils.
Just as differences between major plant func-
tional types (forests and grasslands) continue to
improve our understanding of terrestrial eco-
systems, it is likely that major differences in soil
organisms can improve our understanding of
terrestrial functioning across the globe. Once
we have characterized these highest levels of
soil community information, dividing these bio-
mass pools into further functional groupings—
which can be defined by using taxonomic or
trait-based approaches—may then refine our in-
sights into the functioning of ecosystems across
the globe.
To find this generality across broad spatial

scales, it is critical that we can see past the
limitations that have traditionally obscured
advances in soil ecology. Comparing soil com-
munity information across samples is challeng-
ing because different methods are often used to
characterize different taxa. Evenwhen using the
same standardized methods to identify soil or-
ganisms (for example,metagenomic sequencing
or phospholipid fatty acid extraction), differ-
ences in the efficiency of extraction, identifica-
tion, or quantification of different groups can
mean that entirely unbiased comparison is rarely
possible (112). However, similar sampling lim-
itations exist in the characterization of above-
ground organisms but has not precluded the
detection of broad-scale trends in plant biomass,
diversity, and functional composition. As long
as the identification of different groups is not
consistently biased, these random sampling er-
rors simply contribute to statistical noise, which
can only be overcome with large sampling ef-
forts. As we continue to increase the scale of our
observations across wider environmental gra-
dients, we will have a greater power to detect the
true drivers of soil ecological patterns through
the statistical noise. We do not need a detailed
comparison of all species in every region. In-
stead, we need to identify which regions are
statistically more likely to support different or-
ganisms across a wide biogeographic range.
From a biogeochemical modeling perspective,

a major goal is to generate standardized model-
ing frameworks for the consistent representation
of major ecological processes that regulate SOM
turnover. To achieve this, a critical remaining
challenge is that we do not yet know the ap-
propriate level of ecological resolution that best
captures the variation in soil community func-
tioning. Although the incorporation of high-
level microbial biomass appears to improve
model performance (96), it remains unclear to
what extent we should separate this biomass
into the different functional or taxonomic groups
to represent distinct mechanisms. For example,
quantifying spatial patterns of specialist groups
with distinct biogeochemical pathways (such as
nitrogen fixers and methanogens) should be key
to understanding broad-scale SOM dynamics
(102, 103), whereas the importance of generalist
pathways (such as N and C mineralization) may
be more useful for capturing differences in pro-
cessing rates, reflecting fast and slow cycling

energy pools (56, 57). As we divide these pools
into more refined functional groups with dif-
ferent attributes, there will necessarily be a
trade-off between capturing important new
mechanisms and introducing unnecessary com-
plexity that will compromise model perform-
ance. Model sensitivity analyses will be critical
for identifying which level of ecological detail
is optimal for improving predictive power with-
out compromisingmodel simplicity. These efforts
can then guide empiricists to generate the quan-
titative global information at the ecological reso-
lution that can have the greatest impact onmodel
performance.

Conclusions

The vast majority of soil-dwelling species re-
main to be characterized, and this taxonomic
deficit is likely greater than 90% (58). Combined
with the immense fine-scale variability of soil
communities, this makes it highly challenging
to identify unifying patterns in the global dis-
tribution of soil-dwelling species. However, by
expanding our horizons beyond local-scale analy-
ses and focusing on broader organism groups
that characterize community-level functioning,
soil ecologists have begun to identify general
patterns that provide a simplified perspective.
By exploring the general patterns in soil or-
ganisms across thousands of locations, these
efforts have begun to reveal that the global soil
community is dominated by a manageable num-
ber of taxa (7, 65), with consistent global patterns
of abundance (40, 42) and diversity (6, 8). As we
expand this global perspective, every new level
of global ecological information will enable us
to ask increasingly complex questions about the
fundamental organization of life on land. Shaped
by complex mixtures of climate, edaphic, and
topographic factors, as well as biotic interac-
tions, each of these soil biogeographic patterns
is unique and provides insights into the funda-
mental distribution and dynamics of terrestrial
organic matter.
As the largest terrestrial repository of both

biodiversity and carbon, the effective manage-
ment of soil at a global scale is among our most
powerful weapons in the fight against the com-
bined threats of climate change and biodiversity
loss (4). We are now at an exciting time because
decades of pioneering local-scale analyses have
provided the data and tools to characterize this
integral component of the biosphere. As we
strive to understand this global resource, we
cannot continue to ask “whether” the identity of
soil communities influences global biogeochem-
istry. Given the weight of evidence from the past
decade,wemust now continue to ask “how” global
soil communities drive global biogeochemistry.
Expanding our perspective of global soil com-
munities will enable us to test critical hypothe-
ses about the distribution of organic matter on
land and its dynamics under future climate
change scenarios. But ultimately, this emerging
perspective of the most diverse and abundant
community on land will provide insights into
the fundamental organization of life on Earth.
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ecologists are beginning to identify general patterns that may contribute to predicting biogeochemical dynamics under 
decomposition and turnover of soil organic matter. Although there is variation in soil communities across the globe,
organisms to biogeochemical processes, focusing particularly on the importance of microbial community variation on 
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Soils harbor a rich diversity of invertebrate and microbial life, which drives biogeochemical processes from local to
Microbes' role in soil decomposition
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