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Classical island biogeography recognizes that species richness 
results from the balance of immigration, which decreases with 
isolation (that is, distance from the mainland), extinction, 

which decreases with island size1, and speciation, which increases 
with island size2,3. Subsequent work has identified that environ-
mental heterogeneity and geological and climatic history also have 
important effects on the diversities of island biotas4–7. Individual 
case studies show that biotic interactions can also influence species 
colonization and extinction probabilities on islands, but the general-
izability of these effects is uncertain8,9. The order of arrival, resulting 
in priority effects10, is likely to be particularly important for mutu-
alistic symbioses. The mycorrhizal symbiosis formed between soil 
fungi and most plant species is a prime candidate for priority effects 
because plant species vary in their dependence on the association, 
while mycorrhizal fungi are unlikely to establish first because they 
are obligately dependent on their hosts11,12.

Mycorrhizal fungi are mainly known for their role in nutrient 
acquisition, but also provide additional benefits for their associ-
ated plants, including pathogen resistance and soil aggregation13. 
Associating with mycorrhizal fungi is the ancestral state of plants, 
but this trait has been lost repeatedly over evolutionary history14,15. 
There are several ecological contexts in which the independence 
of mycorrhizal symbioses confers a competitive advantage to 
plants15,16. One is when mycorrhizal fungal presence is unreliable, 

such as in newly formed habitats17,18. With their obligate plant 
host dependence, mycorrhizal fungi are not likely to establish on 
islands—particularly isolated oceanic islands—before their host 
plants. Therefore, the absence of these fungi may act as a biotic 
habitat filter leading to disproportionate colonization by plant spe-
cies that do not rely on mycorrhizal fungi. A second context where 
the independence of the symbioses may confer an advantage to 
plants is when mycorrhizal fungi cannot grow due to environmen-
tal constraints, including anoxic soils and extreme cold19–22. The 
mycorrhizal plant limitation of these environmental constraints 
suggests that there should be fewer mycorrhizal plant species at 
high latitudes and altitudes. A third context that may lead to inde-
pendence of mycorrhizal fungi is when the costs of the symbioses 
outweigh the benefits due to particularly high or low soil fertil-
ity23–26. These environmental forces may be more important where 
dispersal limitation is relatively unimportant, such as in mainland 
regions. Although a recent analysis of the distribution of arbuscu-
lar mycorrhizal fungi suggested that these fungi are not likely to be 
limited by dispersal27, this study did not consider islands on which 
dispersal limitation would be strongest. Moreover, limited disper-
sal of mycorrhizal fungi is supported by distribution patterns of 
ectomycorrhizal fungi28,29, and the performance of both arbuscular 
and ectomycorrhizal plants can be limited by the absence of appro-
priate symbionts30,31.
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Island biogeography has traditionally focused primarily on abiotic drivers of colonization, extinction and speciation. However, 
establishment on islands could also be limited by biotic drivers, such as the absence of symbionts. Most plants, for example, 
form symbioses with mycorrhizal fungi, whose limited dispersal to islands could act as a colonization filter for plants. We tested 
this hypothesis using global-scale analyses of ~1.4 million plant occurrences, including ~200,000 plant species across ~1,100 
regions. We find evidence for a mycorrhizal filter (that is, the filtering out of mycorrhizal plants on islands), with mycorrhi-
zal associations less common among native island plants than native mainland plants. Furthermore, the proportion of native 
mycorrhizal plants in island floras decreased with isolation, possibly as a consequence of a decline in symbiont establishment. 
We also show that mycorrhizal plants contribute disproportionately to the classic latitudinal gradient of plant species diversity, 
with the proportion of mycorrhizal plants being highest near the equator and decreasing towards the poles. Anthropogenic 
pressure and land use alter these plant biogeographical patterns. Naturalized floras show a greater proportion of mycorrhizal 
plant species on islands than in mainland regions, as expected from the anthropogenic co-introduction of plants with their sym-
bionts to islands and anthropogenic disturbance of symbionts in mainland regions. We identify the mycorrhizal association as 
an overlooked driver of global plant biogeographical patterns with implications for contemporary island biogeography and our 
understanding of plant invasions.
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These expected patterns of proportion of mycorrhizal species 
for native plant species may differ for anthropogenically driven 
introductions of plant species14,15. On islands, plant introductions 
by humans may overcome the mycorrhizal filter, as agricultural or 
ornamental perennial plants are commonly brought with soil and 
associated microbes32. This may result in naturalized floras with a 
greater reliance on mycorrhizal fungi18,33. Human disturbance of 
soils through land use may disrupt mycorrhizal fungal communities 
(unreliable presence)34, thereby reducing the proportion of plants in 
a naturalized flora that rely on mycorrhizal fungi. This driver may 
be dominant in mainland regions, where soil disturbance has been 
shown to reduce the presence of mycorrhizal fungi35. While individ-
ual studies have found differences in the proportion of mycorrhizal 
plant species between native and naturalized floras27,35–38, they were 
mostly conducted on small scales and within mainlands. A com-
prehensive global analysis of factors influencing the distribution of 
mycorrhizal plants is required to test for general patterns.

Here, we use a global dataset of 213,710 angiosperm plant spe-
cies, including 1,437,761 plant occurrences across 1,103 regions, to 
test for patterns of plant specie’s mycorrhizal status in island and 
mainland floras, for both native and naturalized plant species. To 
test whether a mycorrhizal filter affects island colonization, we con-
trast the mycorrhizal status (assigned to species in each family from 
each region in the same proportion as the averaged reported pro-
portion of mycorrhizal and non-mycorrhizal species for that fam-
ily) of native and naturalized species in island and mainland floras, 
and assess the effects of island geology, age and distance from the 
mainland on the proportion of species that are mycorrhizal.

results and discussion
Our results show that mycorrhizal fungi influence global plant 
distributions and are associated with classic biogeographical  

patterns such as the latitudinal diversity gradient39 and species–
isolation relationship40. We find compelling evidence that initial 
colonization of islands by plants is influenced by a mycorrhizal 
filter; mycorrhizal species are under-represented in contempo-
rary native island floras compared with mainland floras (Fig. 1). 
Specifically, we find a significant interaction between land type and 
mycorrhizal status, showing that the number of native mycorrhi-
zal plant species on islands is significantly lower than on mainlands 
(P < 0.0001; z = −7.474; generalized linear mixed model (GLMM); 
Supplementary Table 1, model M1). Consistent with the operation 
of the mycorrhizal filter, the proportion of mycorrhizal plant spe-
cies on islands declines with distance from the mainland (Fig. 2a;  
P < 0.01; Supplementary Table 1, model M4; generalized linear 
model (GLM)). Diversification of early mycorrhizal colonists may 
increase the proportion of native mycorrhizal species in old oce-
anic archipelagos, as has been observed in the Hawaiian islands41. 
Nonetheless, our data show no statistically significant relationship 
between island age and the proportion of mycorrhizal plant species 
(P = 0.089; Supplementary Table 1, model M5; GLM).

For mainland native floras, variation in the proportion of mycor-
rhizal plant species is primarily predicted by latitude and correlated 
with environmental variables. Specifically, the proportion of mycor-
rhizal plants increases towards the equator (Fig. 2c,d; all P < 0.001; 
GLM). This strong relationship between latitude and the propor-
tion of mycorrhizal plant species indicates that mycorrhizal plants 
contribute disproportionately to the classic latitudinal diversity gra-
dient—a pattern previously reported for European floras38. This lati-
tudinal change in the proportion of mycorrhizal plant species may 
reflect the arbuscular mycorrhizal ancestral state and tropical origin 
of major plant clades15. Alternatively, the decreasing proportion of 
mycorrhizal plant species towards the poles may be explained by 
extreme environments limiting the plant fungal symbionts in these 
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Fig. 1 | Proportion of mycorrhizal plant species in native and naturalized floras of island and mainland regions. a, For native floras (black bars), 
the proportions of species that are mycorrhizal are significantly greater for mainland than island regions (marginal R2 = 0.57; P < 0.001; GLMM). For 
naturalized floras (grey bars), the proportions of species that are mycorrhizal are significantly greater for island than mainland regions (marginal R2 = 0.11; 
P < 0.001; native mainland, n = 1,030; native island, n = 930; naturalized mainland, n = 809; naturalized island, n = 361; GLMM). Bar heights and error bars 
represent means ± s.e. Lines (labelled with asterisks) above the graph show significantly different proportions. b, Maps of geographical regions showing 
the proportion of mycorrhizal plant species for native and naturalized floras included in this study.
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regions19, such as extreme cold (environmental constraints) and 
extensive past glacial coverage (unreliable presence). Indeed, we 
find that there is a significant reduction in the proportion of mycor-
rhizal plant species with decreasing mean annual temperature  
(Fig. 2b; P < 0.001; GLM). These environmental predictors of the 
proportion of mycorrhizal plant species are stronger for native 
mainland floras than for native island floras (Supplementary Table 1,  
models M3 and M4, and Supplementary Figs. 2 and 3; GLM).

Naturalized island floras are disproportionately mycorrhizal 
compared with naturalized mainland floras (Fig. 1a; P < 0.001; 
Supplementary Table 1, model M2; GLMM), suggesting anthropo-
genic relaxation of the mycorrhizal filter. Anthropogenic relaxation 
is further supported by a weakening dependence of mycorrhizal 
status on island isolation, as the distance from the mainland is no 
longer a significant predictor of species richness in naturalized 
island floras (P = 0.225; Supplementary Table 1, model M7; GLM). 
These results are consistent with human movement of mycorrhizal 
fungi via transplants of mycorrhizal colonized material (for exam-
ple, perennial agricultural crops, horticultural plants, sand and soil 
transports) to islands18,42.

In mainland regions, mycorrhizal plant species are generally 
under-represented in naturalized floras (Fig. 1a) compared with 
native floras, particularly in areas with a high proportion of native 
mycorrhizal plants (Fig. 3a; pseudo R2 (coefficient of determina-
tion) = 0.286; P < 0.0001; GLM). This is consistent with invasions 
of non-mycorrhizal plant species being facilitated by the unreliable 
presence of mycorrhizal fungi due to large-scale anthropogenic 
disturbance35. Alternatively, this pattern may be a result of nutri-
ent deposition as nutrient levels, including nitrogen and phospho-
rus levels, are usually higher in human-modified areas, potentially 

changing the cost–benefit ratio of mycorrhizal symbiosis in favour 
of non-mycorrhizal species. Consistent with mainland regions, we 
find that the proportion of mycorrhizal plants in naturalized island 
floras decreases with human land-use intensity (P < 0.001; Fig. 3b; 
GLM). This may be a result of islands becoming more mainland-
like, with human land use disturbing soil microbes, resulting in 
an unreliable presence or reduced benefit of mycorrhizal fungi. 
Anthropogenic influence on biogeographical patterns is also evi-
dent as environmental variables are weaker predictors for natu-
ralized than native floras (see Supplementary Figs. 2 and 4 for all 
graphs of naturalized plant results; GLM).

We find consistent global patterns in the distribution of mycor-
rhizal plant species: mainland and island floras differ in their pro-
portions of mycorrhizal plant species and this relationship changes 
with human-induced plant introductions. Furthermore, we show 
that in native island floras, the proportion of mycorrhizal plant spe-
cies decreases with isolation (distance from the mainland). These 
findings are consistent with the limited dispersal of mycorrhizal 
fungi to islands, reducing the number of native plant species that 
are mycorrhizal on these islands. Finally, we find a latitudinal rela-
tionship for native mainland floras, where the proportion of mycor-
rhizal plant species is highest at the equator and decreases towards 
the poles, which is consistent with extreme cold limiting the func-
tioning of mycorrhizal fungi20–22. We suggest that these patterns are 
mediated by the mycorrhizal symbiosis. Alternatively, these bio-
geographical patterns might be caused in part by traits that co-vary 
with the mycorrhizal status of plants43,44. For these co-varying traits 
to explain our results, non-mycorrhizal plants would need to exhibit 
greater dispersal ability or greater cold tolerance compared with 
their mycorrhizal counterparts. To date, we know of no evidence of 

0 1 2 3

0.4

0.5

0.6

0.7

0.8

log[distance (km)]

P
ro

po
rt

io
n 

of
 m

yc
or

rh
iz

al
pl

an
t s

pe
ci

es

–10 0 10 20

0.4

0.5

0.6

0.7

0.8

P
ro

po
rt

io
n 

of
 m

yc
or

rh
iz

al
pl

an
t s

pe
ci

es
0 10 20 30 40 50 60 70

0.4

0.5

0.6

0.7

0.8

Absolute latitude (°)

P
ro

po
rt

io
n 

of
 m

yc
or

rh
iz

al
pl

an
t s

pe
ci

es

0 10 20 40 6030 50 70

0

1,000

2,000

3,000

4,000

5,000

Absolute latitude (°) 

S
pe

ci
es

 c
ou

nt

Mean annual temperature (°C)

a b

c d

Fig. 2 | Mycorrhizal fungal associations affect biogeographical patterns of native plants. a, In island regions, increasing distance from the mainland 
is associated with a lower proportion of mycorrhizal plant species (n = 422; P < 0.01; GLM). b, In mainland regions, the proportion of mycorrhizal plant 
species increases with mean annual temperature (n = 515; P < 0.001; GLM). c, In mainland regions, the proportion of mycorrhizal plant species decreases 
in a nonlinear manner with increasing absolute latitude (º from equator; n = 515; P < 0.001; GLM). d, The relationship in c is primarily driven by mycorrhizal 
species (dark brown line and points) compared with non-mycorrhizal species (light brown line and points) counts (º from equator; n = 515; P < 0.001; 
GLM). a and b are based on multi-predictor models including other covariables; we held other covariables at their mean to predict the variable plotted 
here. These model statistics can be found in Supplementary Table 1. c and d include only latitude and are simple pairwise models.
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such covariance. As there is clear evidence for fungal dispersal limi-
tation29–31 and limits of fungal efficiency under cold environmental 
conditions20–22, we contend that our results are probably mediated 
by mycorrhizal fungal availability and functioning.

We show that native and naturalized floras worldwide differ 
in their composition in conjunction with mycorrhizal associa-
tion, with differing proportions in island versus mainland regions. 
Proportions of mycorrhizal plant species in mainland regions vary 
strongly along climatic and latitudinal gradients, with the propor-
tion of mycorrhizal plant species being highest near the equator and 
decreasing towards the poles, suggesting that mycorrhizal species 
contribute disproportionately to the classical diversity–latitude rela-
tionship39. For islands, we find that the composition of native floras 
reflects the mycorrhizal filter of plant colonization success; with the 
initial absence of their mycorrhizal symbionts, mycorrhizal plants 
are disproportionally filtered during island colonization. Human-
influenced movement of naturalized species with their mycorrhizal 
symbionts to islands may alleviate mycorrhizal dispersal limita-
tion, thereby weakening isolation-by-distance effects. While further 
work examining the mycorrhizal status of plants, particularly in the 
tropics, is necessary to confirm these patterns, our results suggest 
that mycorrhizal fungi influence global plant biogeography, includ-
ing island biogeography and the species richness latitudinal gradi-
ent, and influence patterns of human-mediated plant introductions.

Methods
Plant distribution data and floristic status. Plant species occurrence data across 
1,103 regions around the globe (mostly administratively defined regions, such as 
countries and provinces or islands), native status (native versus naturalized) and 
all additional parameters associated with regional characteristics were extracted 
from the Global Alien Naturalized Flora (GloNAF45; Supplementary Note 1) and 
Global Inventory of Floras and Traits (GIFT46) databases. Naturalized is defined 
as non-native species that form self-sustaining populations in new regions47. From 
the GloNAF database, we included only regions for which the available species 
lists had a completeness level of 2 (50–90% of naturalized species included) and 
3 (>90% naturalized species included). From the GIFT database, we only used 
regions for which checklists of native angiosperms were available. When there 
were overlapping regions, the smaller regions were kept if they were greater than 
100 km2 for mainland regions; for islands, the smaller units were always preferred. 
Finally, we removed islands for which the island geology (that is, volcanic, floor, 

shelf, fragment, and so on) was undetermined. After all cleaning of the data, we 
had a total of 1,437,761 plant occurrences across 1,103 unique regions. Our final 
data included 133,491 plant occurrences in 574 regions from the GloNAF dataset 
and 1,304,270 plant occurrences in 979 regions from the GIFT dataset.

Mycorrhizal status. The mycorrhizal status of the 1,437,761 plant occurrences 
included in this study was determined by assigning each species to its plant family 
according to theplantlist.org, incorporating classification from Angiosperm 
Phylogeny Group IV48. We relied on family proportions of known mycorrhizal 
and non-mycorrhizal species to assign mycorrhizal status to species in this study. 
Specifically, within each region, species in a family were assigned mycorrhizal or 
non-mycorrhizal status in the same proportion as that family (Supplementary 
Table 2). Given the geographical bias in knowledge of species-level mycorrhizal 
status (bias towards heavily studied temperate systems), this family-level 
assignment was the most rigorous method we could employ. We used three 
review papers to determine the plant family consensus proportion mycorrhizal 
status15,20,49. While concerns have been raised over incorrect classification in these 
review papers22, which cannot be addressed at this time due to the lack of species-
specific corrections, potential errors are not likely to have large effects on a global 
database. If species in a family were arbuscular mycorrhizal, ectomycorrhizal, 
ericoid mycorrhizal, orchid mycorrhizal or half arbuscular mycorrhizal and half 
ectomycorrhizal, we classified these as ‘mycorrhizal’. Different classifications 
and proportions between the reference papers were accounted for by using the 
average consensus proportions for each mycorrhizal category (mycorrhizal, 
non-mycorrhizal, and equally split arbuscular mycorrhizal and non-mycorrhizal 
(AMNM); see below) across the three references (excluding data for which values 
were not reported). We determined the consensus proportion of sampled species 
in each family that were mycorrhizal, non-mycorrhizal or ambiguous (AMNM). 
We ran each of our analyses twice, putting all ambiguous species (AMNM) as 
either mycorrhizal or non-mycorrhizal. Our initial distribution dataset was 
reduced to species for which we had family-level mycorrhizal data, resulting in the 
data described in the section ‘Plant distribution data and floristic status’ above. 
Specifically, 142,164 unique observations (unique species–location combinations) 
out of ~2,000,000 were removed due to a lack of mycorrhizal data. Nonetheless, 
we find a slightly higher proportion of omitted data points at the highest latitudes; 
these omissions are from Compositae (46) and Leguminosae (3). Full details of 
families and corresponding consensus proportions of mycorrhizal status can be 
found in Supplementary Table 2.

Explanatory variables. Explanatory variables for each of the regions were 
extracted from the GIFT database. For details of environmental data collection, 
see Weigelt et al.46. Explanatory variables include land type (mainland or 
island), latitude and longitude of the region’s centroid, area (km2), mean annual 
temperature (°C), mean annual precipitation (mm)50, maximum elevation 
range (that is, the difference between the lowest and highest elevation (m))51, 
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Fig. 3 | Mycorrhizal fungal associations differentially impact the biogeography of naturalized floras. a, In mainland regions, the proportion of mycorrhizal 
plant species in the naturalized flora is lower than in the native flora, particularly in areas with a high proportion of native mycorrhizal plants (native 
mainland, n = 515; naturalized mainland, n = 294; P < 0.001; GLM). b, On islands, the proportion of mycorrhizal plant species decreases with human land 
use—a composite variable resulting from the sum of the log-transformed urban and managed land area (n = 177; P = 0.001; GLM).
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human population density (n km−2)52 and two land-use metrics (cultivated and 
managed vegetation, and urban land-use area, combined as a sum following 
log-transformation to form the new variable ‘human land use’ in our analyses)53. 
For islands, we also included their distance from the nearest mainland (km) as a 
measure of island isolation40, geological origin (referred to in the model results 
as geology; oceanic or non-oceanic) and island age (millions of years; only 
meaningfully quantified for oceanic islands). We included non-oceanic islands  
in the group of oceanic islands if they were covered with ice (at least 80%) during 
the Last Glacial Maximum53 because the land would have characteristics of  
a newly formed oceanic island after the plant and fungal communities were 
destroyed by glaciation.

Statistical analysis. To test broad-scale patterns of mycorrhizal–plant distributions, 
we modelled regional plant species richness (counts) for mycorrhizal and non-
mycorrhizal plants in two analyses (separately for native and naturalized plants; 
Fig. 1a). For these analyses, we used GLMMs. We chose a Poisson distribution, 
as the response variable—species richness—is count data. The fixed effects were 
mycorrhizal status, land type (mainland or island) and their interaction. The 
random effects were region nested within land type (mainland or island) and 
mycorrhizal status nested within region nested within land type (mainland or 
island). We ran this model separately for native (model M1) and naturalized 
(model M2) plant species richness as response variables. The sample size (n) in 
these two models represents a unique regional combination of native status (native 
or naturalized) and mycorrhizal status (mycorrhizal or non-mycorrhizal). Of the 
4,492 observations in this dataset, 2,246 involved native floras and 2,246 involved 
naturalized floras. This corresponded to 1,123 regions with native data and 1,123 
regions with naturalized data. To create Fig. 1, we converted our count estimates 
from the model to proportions.

To investigate drivers of mycorrhizal status of native and naturalized plants 
in mainland and island floras, we used the proportion of mycorrhizal species at 
each region as the response variable. For this analysis, we used GLMs with a logit 
link function, assuming a binomial distribution of the response variable. For these 
models, we took the natural log of area, human population density, distance from 
the nearest mainland, elevation range and island age to normalize the distributions. 
For the native mainland model (M3), we included area, mean annual precipitation, 
mean annual temperature and elevation range. For the native island model 
(M4), we included area, distance from the mainland, precipitation, temperature, 
elevation range and geology, as well as the interaction between distance from 
the mainland and geology (oceanic or non-oceanic). The tested variables were 
informed through previous study of these variables with this dataset5, as well as 
other island biogeographical studies54,55. As the presence of naturalized species is 
likely to be driven by human activities, the naturalized mainland model (M6) and 
naturalized island model (M7) included human population density in addition 
to the explanatory variables included in the corresponding models for native 
species. Finally, to account for the effect of island age, we additionally analysed 
the subset of oceanic islands for which we had age data. For the models of native 
floras including island age (M5; n = 246), we included area, distance from the 
mainland, age, precipitation, temperature and elevation range. For the models 
of naturalized island floras including age (M8; n = 97), we additionally included 
human population density. The results of these main models are presented in 
Supplementary Table 1 (M1–M8). In these and all models excluding M1 and 
M2, n values are true numbers representing unique regions. Before any further 
subsetting, this dataset covered a total of 1,103 regions (same as observations);  
979 regions had data for native flora and 574 regions had data for naturalized flora.

To explore linear and nonlinear latitudinal patterns in mycorrhizal 
distribution in more detail, we re-ran all models including only absolute latitude 
and absolute latitude squared. We also ran models to investigate anthropogenic 
drivers of mycorrhizal status in naturalized plants only. For these models, 
we included a combined variable of urban land-use area and cultivated and 
managed vegetation, termed ‘human land use’ (the sum of both variables). To 
assess the robustness of our results in the face of the uncertainty in mycorrhizal 
status assignment, we re-ran all models to assign ambiguous (AMNM) plants to 
non-mycorrhizal instead of mycorrhizal assumed in the original models. Here, 
we report the statistics from models in which AMNM plants were assigned to 
mycorrhizal (Supplementary Table 1 and Supplementary Figs. 2–4). For models 
where AMNM plants were assigned to non-mycorrhizal, see Supplementary  
Table 3 and Supplementary Figs. 5–7).

Before running all models, we removed regions where plant coverage was 
unreliable. We considered this to be the case when there was a zero in the total 
calculated mycorrhizal or non-mycorrhizal species counts in this region. The 
main cause of this was incomplete family coverage of mycorrhizal status; if we 
did not have information on the mycorrhizal status of all specie’s families in a 
region, these regions would result in an incorrect sum of zero mycorrhizal and 
zero non-mycorrhizal plant species. We removed these regions because this 
zero value was not representative of the entire region. We also removed island 
regions where geology was undetermined before the analyses. We corrected for 
overdispersion in GLMs using a quasi-binomial or quasi-Poisson family model. 
In addition, most of our model residuals showed spatial autocorrelation, as tested 
using Moran’s I, which is expected in global-scale models with spatially clustered 

geographical regions. We corrected for this spatial autocorrelation by creating a 
new variable (spatial autocovariate) that incorporates a matrix of longitude and 
latitude coordinates of the regions56 in the spdep package in R57. After checking for 
spatial autocorrelation in our corrected models, some models still showed spatial 
autocorrelation (as determined using Moran’s I), but all spatial autocorrelation was 
reduced substantially (correlograms shown in Supplementary Figs. 4 and 7). All 
models and summary statistics were run in R 3.4.1 (ref. 58) in the lme4 package59.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data used in this manuscript are available on request (GIFT and GloNAF 
databases). The GloNAF database has been published and available for use at 
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/ecy.2542. The code 
for plotting data from GIFT is available at https://github.com/BioGeoMacro/GIFT-
export. All family mycorrhizal proportion data are available in Supplementary 
Table 2, and data summarizing the proportions of mycorrhizal and non-
mycorrhizal species per region are supplied in Supplementary Table 4.
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