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Summary

� Pyrogenic savannas with a tree–grassland ‘matrix’ experience frequent fires (i.e. every 1–
3 yr). Aboveground responses to frequent fires have been well studied, but responses of fun-

gal litter decomposers, which directly affect fuels, remain poorly known. We hypothesized

that each fire reorganizes belowground communities and slows litter decomposition, thereby

influencing savanna fuel dynamics.
� In a pine savanna, we established patches near and away from pines that were either

burned or unburned in that year. Within patches, we assessed fungal communities and micro-

bial decomposition of newly deposited litter. Soil variables and plant communities were also

assessed as proximate drivers of fungal communities.
� Fungal communities, but not soil variables or vegetation, differed substantially between

burned and unburned patches. Saprotrophic fungi dominated in unburned patches but

decreased in richness and relative abundance after fire. Differences in fungal communities

with fire were greater in litter than in soils, but unaffected by pine proximity. Litter decom-

posed more slowly in burned than in unburned patches.
� Fires drive shifts between fire-adapted and sensitive fungal taxa in pine savannas. Slower

fuel decomposition in accordance with saprotroph declines should enhance fuel accumulation

and could impact future fire characteristics. Thus, fire reorganization of fungal communities

may enhance persistence of these fire-adapted ecosystems.

Introduction

Recurrent fires maintain and structure many terrestrial ecosys-
tems, including prairies, chaparral, savannas, and some conifer-
ous forests. In many of these ‘pyrogenic’ systems, dominance of
flammable grasses in the ground layer promotes the spread of fire
(Beckage et al., 2011; Staver et al., 2011; Cardoso et al., 2018),
which prevents ecosystem transition to a different state (Beckage
et al., 2009; Callaham et al., 2012; Dantas et al., 2016; Pausas &
Bond, 2019). Unlike high-profile, destructive wildfires (Chen,
2006; Hood et al., 2018), frequent low-intensity fires are essential
for maintaining biotic and abiotic components of ‘pyrogenic’
biomes (Fill et al., 2015; He & Lamont, 2018) that include some
of the most diverse plant communities on Earth (Bond et al.,
2005; Noss et al., 2015; Peet et al., 2018). Frequent prescribed
burning is currently used to mimic natural fire regimes and help
conserve many pyrogenic ecosystems and their biodiversity (Peet
et al., 2018).

Recurrent fires create characteristic landscapes in some pyro-
genic systems. Pine savannas of the North American Coastal
Plain are a key example characterized by discontinuous tree cover
within a continuous ground-layer vegetation. This pine–

grassland ‘matrix’ supports a diverse, highly endemic flora and
fauna (Platt, 1999; Noss et al., 2015; Peet et al., 2018) and struc-
tures the spatial distribution of fuels, soil properties, and plants
that, in turn, influence fire characteristics (Ellair & Platt, 2013;
Platt et al., 2015, 2016; Varner et al., 2015; Veldman et al.,
2015). For example, fuel loads from overstory pines (Pinus
palustris) directly influence fire intensity (Platt et al., 2016), and
dominance of pines defines the chemical composition of litter,
soil pH and nutrient concentrations, loads of photosynthetic car-
bon (C), and vegetation demand for water and nutrients (Priha
et al., 1999; Osono et al., 2014; Deng et al., 2015; Stoppe et al.,
2016). Fire, the pine–grassland matrix, and associated variability
in edaphic factors are all anticipated to affect microbial commu-
nities below ground (Prober et al., 2015). Little research, how-
ever, has explored these effects in pyrogenic systems like pine
savannas.

Fungi are a foundational component of terrestrial ecosystems,
including in pine savannas. Saprotrophic fungi drive litter
decomposition (Rayner & Boddy, 1988), and mycorrhizal taxa
affect the diversity and productivity of plant communities (van
der Heijden et al., 1998). Fungi tend to be more susceptible to
fire than bacteria are (Dooley & Treseder, 2012), but their
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responses to fire vary among taxa and ecological guilds (Dumon-
tet et al., 1996; Mabuhay et al., 2003). Most fire–fungus studies
have assessed the effects of high-intensity wildfires, which cause
large declines in fungal biomass and result in strong composi-
tional shifts in fungal communities (Treseder et al., 2004; Dooley
& Treseder, 2012; Holden et al., 2013; Prendergast-Miller et al.,
2017). Although fire responses may vary among biomes, fungal
community shifts in managed pyrogenic ecosystems may differ
from wildfire effects because prescribed fires often have very dif-
ferent characteristics (e.g. frequent, low intensity).

Fungi in pyrogenic ecosystems may be adapted to frequent
fires. Some fungi produce heat- and smoke-activated spores (Car-
penter & Trappe, 1985), whereas others may benefit from post-
fire ash deposits (Hart et al., 2005; Dean et al., 2015), altered soil
hydrophobicity (Certini, 2005), or reduced competition from
other species (Wicklow & Hirschfield, 1979). Recurrent fires
consume less fuel and produce less heat, which does not penetrate
into soil as deeply as during high-intensity fires (Smith et al.,
2016). Accordingly, fungal community shifts in pyrogenic
ecosystems may be ‘relatively modest’ (Johnson & Miyanishi,
1995; Choromanska & DeLuca, 2001; Korb et al., 2004) and
primarily be driven by indirect fire-induced changes in soil prop-
erties (e.g. pH shifts) and plant communities (e.g. Hart et al.,
2005; Ponder et al., 2009; Oliver et al., 2015). The pine–grass-
land matrix created by recurrent fires (sensu Platt et al., 2016)
leads to spatial variation in fuel loads, plant communities, and
substrates, all of which could structure fungal communities and
determine their responses to fire. We propose that prescribed fires
select for fire-adapted fungal species, with fungal community
responses to fire depending on location within the pine–grassland
matrix.

Frequent fires that alter fungal communities may modify
ecosystem functions that, in turn, influence future fires. Fire
intensity in pine savannas is directly related to accumulation of
fine fuels produced by trees – shed pine needles, cones, and bark
(Platt et al., 2016; Peet et al., 2018). These fine fuels are decom-
posed primarily by microbial saprotrophs, so fire-induced
changes to functioning of these organisms should influence
decomposition of new litter. Proposed fire effects on litter
decomposition include those mediated by altered soil parameters
(pH, changes in nitrogen (N) concentration, or soil moisture) or
plant composition (Allison et al., 2013; Ficken & Wright, 2017),
whereas the contribution of fungi that play a major role in
decomposition (Kjøller & Struwe, 1992) has received lesser
attention. Well-known postfire increases in ascomycetes (Cairney
& Bastias, 2007), many of which are saprotrophic, might tem-
porarily increase fuel decomposition and reduce available fuels
for future fires. Alternatively, fire suppression of basidiomycetes
(Cairney & Bastias, 2007), many of which are also important
saprotrophs, might promote fuel accumulation and potentially
increase spread of future fires. The net effects of these fire
responses are important for predicting microbial feedbacks to
fuels in fire-frequented ecosystems.

In this study, we assessed the interactive effects of fire and the
pine–grassland matrix on fungal community composition and
microbial decomposition of litter in a pine savanna ecosystem.

We characterized fungal communities in replicated patches that
were burned or unburned in the most recent fire (mid-June
2014), near and away from overstory pines. We sampled litter
and the uppermost soil layer and then characterized fungal com-
munities by amplicon sequencing of the internal transcribed
spacer 2 (ITS2) region (Illumina MiSeq; Illumina, San Diego,
CA, USA). We collected additional data on soil properties and
plant community composition to relate variation in fungal com-
munity structure to other ecosystem components. In the same
plots, litter decomposition rates were assessed over a 9-month
period. We hypothesized that:
(1) Fire would reorganize fungal communities, but effects would
differ depending on substrate and pine proximity. Locations near
or away from pines and in litter or soil substrates may result in
compositionally different fungal communities that, in turn, are
differentially reorganized by fire. For example, fire intensity
increases with greater density of pine needles (Ellair & Platt,
2013; Platt et al., 2016), so fungal communities in the vicinity of
pines may be altered by fire more than communities away from
pines are.
(2) Postfire shifts in fungal communities should be tied to fire-
induced shifts in soil properties and vegetation, as suggested by
prior studies in similar systems (Hart et al., 2005; Ponder et al.,
2009; Oliver et al., 2015). For example, fungal taxa associated
with flammable plants favoured by fire (sensu Gagnon et al.,
2010) might respond positively to fire, whereas fungi associated
with less-resistant plant hosts may decline (sensu Platt et al.,
2016). Fungal taxa adapted to alkaline or high-nutrient condi-
tions might also be favoured by postfire shifts in soil properties,
such as increased soil pH, N, phosphorus (P), and C associated
with low-intensity fires (Raison & McGarity, 1980; Certini,
2005; Ponder et al., 2009).
(3) Fine-fuel decomposition should be governed by both fire
and proximity to pine. Pine needles should decompose slower
than grass litter, leading to reduced decomposition below pines
(Platt et al., 2016). Fire effects on decomposition, however,
might be tied to fungal taxa that fire enhances or suppresses.
Depending on which group of fungi – fire sensitive or fire
adapted – contain more efficient saprotrophs, we anticipate cor-
responding effects on litter decomposition.

Materials and Methods

Study site

We conducted our study in an old-growth longleaf pine savanna
at the Wade Tract, Thomas County, GA, USA (30°450N,
84°000W). This 80 ha site, on moderately dissected terrain 25–
50 m above sea level, is characterized by a growing season of 10–
11 months and average precipitation of c. 1350 mm. Surficial
soils are Pliocene-aged, acidic, fine-textured sands with A hori-
zons 50–100 cm deep over a clay hardpan (Typic and Arenic
Kandiudults; Carr et al., 2009; Levi et al., 2010). From the early
1800s, the site was annually–biennially burned with low-intensity
fires (Platt et al., 1988), resulting in an open savanna landscape
with discontinuous canopy of pines (P. palustris) and shrub
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seedlings (Quercus spp.), and continuous ground-layer vegetation
dominated by warm-season grasses (Platt et al., 1988; Gilliam &
Platt, 1999). Managed by Tall Timbers Research Station since
1978, the site has been burned annually–biennially using pre-
scribed fires conducted between April and August, using drip
torches, 1–2 wk after rain at relative humidity of 50–60% and
winds 10–20 km h�1. Flame heights commonly approach 1–2 m
and result in 60–90% removal of accumulated fuels.

Study plots

Study plots were established in mid-June 2014, right after pre-
scribed fires. Thirty patches unburned in 2014, at least 5 m2 in area,
were randomly selected in upland pine savanna, such that 15 were
near (< 5 m) and 15 away (> 10m) from overstory pines. Given the
ubiquity of fire in this system, even ‘unburned’ patches had burned
in the last 1–3 yr. Next, similar-sized patches that burned in 2014
were selected as randomly as possible within 5–10m of the
unburned patches. This resulted in 30 pairs of burned and
unburned patches located next to each other, and arrayed across
upland regions of the easement (Fig. 1). The paired design reduced
variation in overstory conditions, plant community composition,
and soil properties to isolate fire effects on fungal community com-
position. Although pairs had similar environmental conditions,
across patches there was a wide range of plant communities and soil
properties. All 60 patches were selected such that they did not con-
tain large amounts of woody debris, such as fallen trees or large
branches. A sampling plot (19 1 m2) was randomly located within
each of the 60 patches, at least 1 m from the patch border.

Plant community composition

We used quadrats to assess plant community composition within
each 1 m2 plot in mid-July 2014 as a potential driver of fungal
community composition and decomposition. Nomenclature fol-
lowed Weakley (2015). Voucher specimens of each plant species
included in the study were collected outside plots and deposited
in the herbarium at Tall Timbers Research Station. Specimens
are in the Florida State University online herbarium (https://he
rbarium.bio.fsu.edu).

Soil chemical analyses

For each plot, soil chemical and physical properties were
assessed as potential drivers of fungal community composition
and decomposition. Soils within plots were subsampled from
those used to assess fungal communities (see next section ‘Sam-
pling of fungal communities’). Chemical and physical analyses
were conducted at the Kansas State University Soil Testing Lab-
oratory, unless otherwise noted. P content was measured using
the Mehlich-3 method on a Lachat Quickchem 8000 (Lachet
Instruments, Loveland, CO, USA). Total C and N were anal-
ysed on a Leco TruSpec CN Carbon/Nitrogen combustion
analyser (Leco Corporation, St Joseph, MO, USA). Particle size
(sand, silt, clay) was estimated by a modified hydrometer
method (Bouyoucos, 1962). Soil pH was measured using 1 : 2

(v/v) soil : double-distilled H2O (ddH2O) solution using a pH
meter (Mettler Toledo, Columbus, OH, USA). Gravimetric soil
moisture was measured as weight loss after drying a 10 g soil
subsample at 60°C for 48 h; soil organic content was then mea-
sured by sample ignition at 550°C for 1 h.

Sampling of fungal communities

Litter and the uppermost soil layer inside each plot were sampled
in mid-July 2014 (14 July 2014). Samples were carefully collected
from three randomly selected 99 9 cm2 areas in each plot. First,
litter was collected manually from the soil surface, ensuring that
no recently fallen material (postfire) was collected. In burned
plots, litter was often charred, but was not entirely consumed in
the most recent fire; in unburned plots, litter had been present for
some time, typically since the previous fall. After litter was col-
lected, surficial soils to a depth of 1.5 cm were collected. The litter
and soil collected from each plot were pooled in separate plastic
bags (n = 120). To avoid cross-contamination, all sampling equip-
ment was sterilized with 10% bleach and 90% isopropyl alcohol
between plots. Collected soil and litter samples were kept in a
cooler with freezer packs in the field, frozen at �20°C within 4 h,
and then shipped overnight to the University of Kansas, where
they were kept at �80°C until further analysed. Before down-
stream applications, soils and litter were thawed and thoroughly
homogenized within sealed collection bags. A 100 g subsample
was taken for soil chemical analyses and a c. 2 g subsample of soil
and litter material was used for further molecular work.

DNA extraction and PCR amplification

A DNA metabarcoding approach was used to assess fungal com-
munity composition. DNA extraction of soil and litter samples
was carried out using the MoBio PowerSoil Kit (MoBio, Carls-
bad, CA, USA). Litter samples were homogenized before DNA
extraction: 2 g of litter was frozen in liquid N and turned into
fine powder in a sterile porcelain mortar. DNA extraction was
carried out according to the manufacturer’s protocol, using
0.25 g of material for both soils and litter. The forward primer
fITS7 (Ihrmark et al., 2012) and the reverse primer ITS4 (White
et al., 1990) were used to amplify the ITS2 region of the ribo-
some encoding operon. This region is a universal barcode for
fungi (Schoch et al., 2012) and is particularly suited for short
paired-end Illumina MiSeq sequencing (Oliver et al., 2015). Two
replicated PCR reactions were done for each sample. Template
DNA (5 ng) was used for the two-step PCR process, as recom-
mended by Berry et al. (2011). The PCR mix contained
5 lg ll�1 DNA, 5 ll 59 Q5 buffer (New England Biosystems,
Ipswich, MA, USA), 0.625 ll dNTPs (10 mM), 1.25 ll each of
forward and reverse primers (10 lM), 0.125 ll Q5 proof-reading
polymerase (New England Biosystems), and ddH2O to adjust the
reaction volume to 25 ll. The reaction scheme was one cycle at
98°C for 30 s, 25 cycles of 98°C for 10 s, 57°C for 30 s, and
72°C for 30 s, followed by one cycle at 72°C for 2 min and
10 min hold at 4°C. PCR products were checked on agarose gels
to ensure successful amplification and were cleaned using
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Agencourt AMPure XP magnetic beads (Beckman Coulter, Indi-
anapolis, IN, USA).

Library preparation and sequencing

DNA libraries from fungal communities were created using a
Nextera protocol, and then sequenced using Illumina MiSeq. In
a secondary PCR reaction, unique 12 bp sequence barcodes
(Nextera indices; Illumina) were ligated to each sample. The
PCR was run under similar conditions, except 5 ll of the primary
PCR amplicon was used instead of the original DNA template,
and number of cycles was set to eight. Secondary PCR amplicons
were purified with Agencourt AMPure XP magnetic beads, and
DNA concentrations were assessed by Qubit 2.0 (LifeTechnolo-
gies, Carlsbad, CA, USA). Samples were pooled in equimolar
concentration to a single library. Fungal sequences were gener-
ated using an Illumina MiSeq (Illumina) at the Kansas State Inte-
grated Genomics Center. The entire bioproject, including raw
sequencing data (fastq files), is available in the National Center
for Biotechnology Information Sequence Read Archive, accession
no. PRJNA350328.

Bioinformatics

Sequencing data were analysed following Caporaso et al. (2010)
using QIIME v.1.9.0, the complete bioinformatics pipeline is avail-
able upon request. The sequencing was paired end reads. Quality
and barcode filtering resulted in 6322 437 reads with an average

Phred score ≥ 30 and median length of 268 bp. Open-reference
operational taxonomic unit (OTU) picking using Usearch 6.1
and the UNITE fungal ITS reference database v.7.2 (Nilsson
et al., 2018) was used to cluster OTUs at 97% similarity. All
chimeric sequences and OTUs with fewer than five reads were
removed to eliminate potential PCR/sequencing artefacts, as rec-
ommended by Lindahl et al. (2013). Data were then subsampled
to 10 000 high-quality sequences per sample; six samples were
removed due to low read number. Taxonomic identification used
the Ribosomal Database Project Classifier 2.2 (Wang et al., 2007)
matched to the UNITE database. Using taxonomic identities,
fungal ecological groups (animal pathogenic, arbuscular mycor-
rhizal, ectomycorrhizal, lichenicolous, lichenized, mycoparasitic,
plant pathogenic, saprotrophic – all probable or highly probable)
were identified using FUNGuild (Nguyen et al., 2015).

Assessment of microbial decomposition rate

Fresh litter was used to assess microbial decomposition in plots.
Approx. 5 kg of recently deposited and intact dead plant material
was collected outside plots in unburned patches in mid-June 2014.
This new litter included pine needles, oak leaves, and grass culms
produced in the previous year; partially decomposed litter on the
ground surface was not included. New litter collected from
unburned patches both near and away from pines was kept separate.
All collected new litter was shipped to the University of Kansas,
where it was kept at �20°C for < 2 wk until it was processed. In
Kansas, field-collected litter was thawed, dried at 60°C for 2 d, and

Fig. 1 Location of the experimental plots on the Wade Tract easement. The 60 plots represented four treatment combinations: away from pines (squares)
and near pines (circles), unburned (blue), or burned (orange) in 2014.
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then ground using aWileyMill #4 (Thomas Scientific, Swedesboro,
NJ, USA) with a 6 mm opening. Grinding increased the surface
area, mimicking size transformations normally produced by macro-
fauna and invertebrates excluded from our litter bags (by using 30
µm nylon mesh, see below). New, ground litter, separated for
sources near or away from pines, was placed in plastic containers,
shipped to the Radiation Science & Engineering Center at Pennsyl-
vania State University, where the litter was sterilized via gamma-irra-
diation to c. 32 kGy, and then returned to the University of Kansas.
To assess decomposition, c. 5 g of sterilized new litter and a steril-
ized, internal identification tag were placed in 149 14 cm2 mesh
bags created out of 30 lm nylon mesh (Amazon LLC, Seattle, WA,
USA). This mesh size allowed entry only of microbes, including
fungi, bacteria, and some protists (Bradford et al., 2002). Bags were
weighed before and after litter addition to measure the exact initial
mass of the sterilized litter. Mesh bags were then heat-sealed, placed
in sterile plastic bags, and frozen at�80°Cuntil deployment. All lit-
ter work was done in a sterile hood. In mid-July of 2014, triplicate
bags were placed within the experimental plots. Litter bags were
placed in plots that matched their origin, to avoid home-field advan-
tage (Chomel et al., 2015) on the ground surface among vegetation,
and anchored with 5 cm sod-staples, so that one side contacted exist-
ing litter and any exposed soil. Over time, litter deposited naturally
often was present on top of the bags (especially after 9 months), but
did not form a continuous mat over the bags. Bags were collected 3,
6 and 9months after fire. Upon collection, bags were placed into
separate sterile plastic bags and shipped overnight to Kansas. Con-
tents were dried at 60°C for 3 d and reweighed to determine per-
centage mass loss during incubation in the field.

Statistical analyses

Variation in plant community composition and soil variables
caused by spatial location, proximity to pines and fire was anal-
ysed by PERMANOVA, using the PRIMER 7+ software (Anderson
et al., 2008). Variability in the data cloud was assessed according
to sets of predictor variables: plot coordinates were set as ‘Geo
factors’, soil variables were set as ‘environmental (Env) factors’.
Environmental data were transformed (loge(X + 1)) as recom-
mended by software to obtain a resemblance matrix. For species
data, the Bray–Curtis similarity index was used. Distribution in
predictor variables was checked before running the analysis, to
make sure they were not highly collinear or redundant. Plot coor-
dinates were included in the model as first factor, as we expected
plot location to impact soil variables and species diversity, and
not vice versa. The best possible rank-order for other factors was
suggested by software to maximize Spearman rank correlation.
The analysis provided pseudo-F-statistics, percentage variation
explained by factors in the plant community composition, and a
P-value for statistical significance. We also quantified the effect of
variation in soil variables on plant community composition (pres-
ence–absence data). Similarity in plant communities were calcu-
lated as Bray–Curtis indexes (presence–absence) and visualized
using nonmetric multidimensional scaling (NMDS) with 500
iterations in PC-ORD (McCune & Mefford, 2011). Soil variables
(C, P, N, pH, soil moisture, etc.) were assessed as predictors of

plant community compositions, using Pearson’s correlation anal-
ysis, in PC-ORD. Indicator species analysis (Dufrêne & Legendre,
1997) was then used to identify plant taxa indicative of burned
or unburned conditions, in PC-ORD.

Variations in fungal communities were assessed using
PERMANOVA, but also in relation to plant community data in
addition to soil variables. Within the PERMANOVA, we assessed
the effects of soil parameters (Env factor as above) and plant com-
munity structure (Species data factor) on fungal community com-
position (OTU abundance by plots). As with plants, we then
visualized differences in fungal community structure using NMDS
in PC-ORD and carried out indicator species analysis to reveal fun-
gal indicators of burned and unburned communities. Pearson cor-
relation tests included individual plant species and soil variables to
reveal potential correlations with fungal community structure.

Differences in microbial decomposition at three time points
(3, 6, and 9 months) were assessed, in response to fire and pine
proximity. Variation in decomposition based on these factors was
calculated using a generalized linear model, which tested for dif-
ferences in proportional mass loss of litter between burned and
unburned plots, near and away from pines. For all analyses, R
code is available upon request. In addition, decomposition data
were included in ordination analyses (NMDS see earlier) to assess
whether plant or fungal community structure or soil variables
were correlated with decomposition rates.

To understand how individual factors differed with fire, we
used paired t-tests (burned and unburned) for means of individ-
ual soil variables, richness and abundance in fungal ecological
guilds, and taxonomic genera using R (R Core Team, 2013). We
assessed fire effect on richness and abundance in 40 fungal genera
that either had richness of > 20 OTUs, or abundance of > 0.5%
of fungal reads obtained. Fungal taxa and ecological groups
located near or away from pines in litter or soil (resulting in four
community types) were analysed separately to account for initial
variation in community structure that could impact revealed
responses to fire. Among the ecological groups, arbuscular mycor-
rhizal, lichenicolous, and lichenized fungi were omitted from the
analysis due to low number of OTUs. Fire effect (i.e. percentage
increase or decline in variable) was calculated for soil parameters,
and both richness and abundance of fungal genera/or ecological
guilds, along with corresponding P-values and t-statistics. To
account for multiple tests, the �Sid�ak correction (�Sid�ak, 1967) was
used to assess statistical significance of differences in these vari-
ables between burned and unburned plots.

To visualize taxonomic/ecological ranking of the fungal com-
munities among litter and soil substrates, pie charts were gener-
ated to show relative richness and abundance of taxa/or
ecological guilds.

Results

Effects of fire and pine proximity on soil properties and
plant communities

Soil properties varied widely across plots and were only weakly
related to fire or pine proximity, as revealed by PERMANOVA.
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Spatial location of the plot was the strongest predictor of soil
properties, explaining c. 19% of the variation (Supporting Infor-
mation Table S1). Proximity to pines also had a significant effect
on soil properties (P < 0.001) but explained less variation (c. 4.5-
%) than spatial location. Soil properties were not different
between burned and unburned plots (Table 1).

Across the experimental plots, we identified 178 plant species
belonging to 41 taxonomic families (Table S2). These species
represented about one-third of the total number of vascular plant
species recorded in the flora of the Wade Tract (W.J. Platt,
unpublished data). Plant community composition varied widely
across the experimental plots but was more related to soil proper-
ties than to either fire or pine proximity. As indicated in
Table S3, plant community composition was largely explained by
soil properties (PERMANOVA: 22% of the variation), especially
soil P (8% of the variation), and spatial location (10% of the vari-
ation). Pine proximity and fire had lesser effects on plant com-
munity composition; each explained c. 3% of plant
compositional variation (Table S3). Plant communities in
burned and unburned plots were not strongly differentiated by
NMDS ordination (Fig. S1). Indicator species analysis revealed
four herbaceous plants associated with fire: Euphorbia discoidalis
(P = 0.005), Mimosa quadrivalvis (P = 0.01), Symphotrichum
adnatum (P = 0.018), and Asclepias verticillata (P = 0.027). Three
herbaceous plant species were indicators of unburned communi-
ties: Ageratina aromatica (P = 0.038), Andropogon gerardi
(P = 0.047), and Saccharum alopecurioides (P = 0.049).

The effects of pine proximity and fire on fungal community
structure

A taxonomic description of fungal communities of litter and soil
is presented in Figs S2–S4 and Table S4. The measured predic-
tors of fungal community composition explained a major fraction
(c. 66%) of the observed variation in fungal community struc-
ture. Contrary to our expectation, there was no strong effect of
plot spatial location on fungal communities (Table 2). Plant
community composition was the strongest predictor of fungal
community structure, explaining about one-third of variation

(Table 2). Other strong predictors included substrate (i.e. litter vs
soil; c. 12%), followed by soil parameters (c. 9%) and fire (c. 7%).
When fire effect was assessed for litter and soil communities sepa-
rately, the effect on litter fungi (c. 9%) was double that of soil
fungi (c. 4%). The effect of pine proximity on fungal community
structure, although significant (P < 0.001), was relatively weak
(c. 2%).

Although plant community composition and soil variables best
explained overall fungal community composition (Table 2), no
individual plant species or soil variable was a strong predictor
(Fig. 2). Of the plant species recorded in experimental plots and
soil variables measured in our study, none correlated strongly
with fungal community composition (r2 > 0.25). Weaker correla-
tions (r2 > 0.15) were found with three plant species: Galium
hispidulum, E. discoidalis, andM. quadrivalvis (Fig. 2).

Fire had a significant effect on fungal communities, in contrast
to weak fire effects on plant communities and soil variables.
Unburned and burned fungal assemblages were distinctly clus-
tered in the NMDS ordination (Fig. 2), as were soil and litter
communities.

Decomposition data

Litter bags were often colonized by fungal mycelia within
3 months of placement in the field (personal observations). In
unburned patches, fungi were often noted as having colonized lit-
ter bags, and mycelia often covered the bag undersides. The
amount of decomposed litter did not change with pine proxim-
ity, as revealed in generalized linear model analyses (P = 0.292).
Mass loss was, however, significantly greater in unburned plots
(all P < 0.0001 for each sampling time), as indicated in Fig. 3.
The difference in litter mass lost between burned and unburned

Table 1 Comparison of soil variables between burned and unburned plot
as revealed by two-sample pairwise t-test.

Soil variable

Statistics

tdf P-value

Phosphorus t14 =�0.383 0.707
Nitrogen (N) t14 = 0.997 0.336
Carbon (C) t14 =�0.095 0.926
C : N ratio t14 =�2.19 0.046
Sand t14 =�0.22 0.827
Silt t14 = 0.56 0.581
Clay t14 =�1.0 0.334
Moisture (gravimetric water content) t14 = 1.23 0.238
Organic matter t14 = 0.096 0.925
pH t14 = 0.309 0.770

None of the variables was significantly different (P < 0.0051; �Sid�ak correc-
tion for multiple tests).

Table 2 Factors affecting community structure of savanna fungi.

Variable
Pseudo-F
statistics

P-
value

Variation explained in fungal
community composition (%)

Plot spatial location 1.24 0.08
Fire 7.5 0.0001 6.69.3, litter fungi,

P < 0.00013.9, soil fungi,
P = 0.0002

Substrate 15.5 0.0001 11.9
Pine proximity 2.25 0.0001 1.7
Soil variables
(overall)

1.5 0.0001 8.8

Phosphorus 0.0027 1.8
Nitrogen (N) 0.0014 1.9
Carbon (C) 0.0019 1.9
C : N ratio 0.247
Particle size 0.163
Moisture 0.344
Organic matter 0.495
pH 0.724
Overall plant
community
composition

1.3 0.0001 34.5

Total variation explained 65.8

Statistically significant factors are shown in bold alongside the percentage
of variation they explained in fungal community composition.
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bags was c. 6.5% at 3 months (20.6� 6.7% vs 27.1� 9.9%),
and this difference increased slightly over time: 6 months, c. 11%
(23.4� 7.7% vs 34.2� 8.1%); 9 months, c. 13% (26.5� 9.9%
vs 39.3.6� 9.7%). Moreover, the amount of mass lost to micro-
bial decomposition was strongly correlated with fungal commu-
nity structure (R = 0.496), as depicted in the NMDS plot (vector
in Fig. 2). Mass lost was only weakly correlated with total N
(R = 0.267), total C (R = 0.269), and organic matter (R = 0.196).
However, none of these soil variables was strongly affected by
fire, and, therefore, unlikely could explain the differences in
decomposition rates between burned and unburned plots.

Responses of fungal ecological groups to fire

We analysed ecological group responses to fire independently for
communities of litter and soil, located near and away from pines.
Saprotrophic fungi were the most sensitive to fire and declined in
richness (18–34%) in all litter and near pine soil communities. A
decline in abundance (49%) of saprotrophs was also observed in
litter away from pine (Table 3). Within saprotrophic fungi, the
relative abundance of ascomycetes in litter increased with fire
from c. 65% to 88% (t26 = 4.7; P < 0.001), whereas the relative
proportion of basidiomycetes declined from c. 34% to 12%
(t26 = 4.7; P < 0.001). Ectomycorrhizal fungi were negatively
affected by fire, particularly near pine communities, but these dif-
ferences were not statistically significant after correction for mul-
tiple comparisons. Animal pathogenic fungi declined in richness
and relative abundance in response to fire (Table 3). In contrast
to these three groups, mycoparasites had higher abundance (by
500–1200%) in burned litter communities near pine.

Fungal taxonomic responses to fire

Fire caused major declines in richness and abundance in many
fungal genera, but some genera thrived following recent fire. As
with ecological groups, we first divided samples into four com-
munity types (pine proximity, substrate) to account for clear
community differences. The strongest positive response to fire
was observed for the genus Periconia, which increased 2–10 times
in richness and abundance in burned litter communities
(Table S4). In some community types, increases in the richness
or abundance following recent fire was observed for the plant
pathogenic genus Teratosphaeria, and ectomycorrhizal
Cenococcum. By contrast, strong declines were observed for sapro-
trophic genera, including Acremonium, Mycena, Trichoderma,
and Phialophora.

Indicator species analysis revealed many different fungal OTUs
clearly associated with burned or unburned communities. Over-
all, 1004 OTUs were identified as indicators of unburned com-
munities and 566 OTUs were indicators of recently burned
communities (see Table S5 for details).

Discussion

Fire reorganized fungal communities and slowed litter decompo-
sition by fungi and other microbes. Fungal assemblages of burned
plots were dominated by postfire specialist fungi but lacked key
fungal saprotrophs compared with unburned plots. Fire-sensitive
fungi, including key decomposers, likely replace fire-adapted
species over time and restore decomposition to pre-burn levels.
Based on our comparison of recently burned and unburned plots,
we expect that significant postfire reorganization (sensu Schmidt
et al., 2007) of fungal communities occurs within 1–2 yr after fire
in pine savannas. By contrast, wildfire studies indicate that transi-
tions of fungal communities from ‘burned’ to ‘unburned’ states
can take more than a decade (Dooley & Treseder, 2012; Holden
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et al., 2013; Oliver et al., 2015). Decomposition data here indi-
cate that fire effects on microbial decomposition may be impor-
tant, albeit transient, compared with fire regime impacts through
litter stoichiometry (Ficken & Wright, 2017; Butler et al., 2019).
These differences suggest that variation in fire return intervals
and/or fire intensities may have large effects on microbial com-
munity dynamics and function.

Plant community composition was a strong predictor of fungal
community structure in the pine savanna; however, the observed
responses to fire in fungi were not due to plant community shifts.
No strong effects of fire were observed for plant communities,
whereas fungal community composition changed significantly.
Pyrogenic plants have underground organs that result in rapid
resprouting after top-kill by fire (Collins & Gibson, 1990; Olson
& Platt, 1995; Bellingham & Sparrow, 2000; Lamont et al.,
2011), although resprouting may be sensitive to fire intensity
(Drewa et al., 2006). Pine savannas have experienced low-inten-
sity fires for many millennia, filtering ground-layer plant commu-
nities for species with such key adaptations to frequent fire (Platt,
1999; Peet et al., 2018). By contrast, although experiencing the
same historical fire regime as plants, fungal communities showed
significant reorganization: we noted > 1000 fungi characteristic
to unburned communities and > 500 fungi characteristic to
burned communities. We anticipate that fire-sensitive fungi,
removed from litter and upper soil layers by fire, regrow from

deeper soils or perhaps recolonize from unburned patches or new
litter inputs (Ashkannejhad & Horton, 2006; Palmero et al.,
2011). Such highly dynamic fungal communities, which reorga-
nize rapidly after each fire and then transition to distinctly differ-
ent assemblages over 1–2 yr, only to be reorganized again after
the next fire, thus appear to differ markedly from the more-per-
sistent plant communities in pyrogenic ecosystems. Of three
plant species identified as fire indicators, only two (E. discoidalis
and M. quadrivalvis) were weakly correlated with fungal commu-
nity structure and could contribute to fire-driven changes in fun-
gal communities.

Fungal community changes with fire also appear to be weakly
related to soil conditions. We observed minimal changes in soil
parameters as a result of recent fire. The sandy nature of savanna
soils and long history of frequent fires likely explain why there
were no lasting shifts in pH, organic matter, or even soil moisture
in soils collected the month following fire. Some prior studies in
other habitats have shown strong fire-induced shifts in nutrients
and soil pH due to ash deposits (Raison & McGarity, 1980; Pon-
der et al., 2009), but soil structure and chemistry in these systems
appear distinct from those in old-growth pine savannas. Given
only small changes in soil chemistry and plant community com-
position, we attribute fire-induced shifts in savanna fungi to
direct fire effects (or indirect effects not assessed in this study).
Greater heating at ground level, either directly by fire or

Table 3 Differences in richness and relative abundance of fungal ecological groups between paired burned and unburned samples.

Functional group/community location

Abundance differences Richness differences

Effect Statistics Effect Statistics

Saprotrophic fungi
Litter away from pine 49.4% P = 0.0007 t12 = 4.1 34.0% P = 0.0003 t12 = 4.5

Litter near pine P = 0.022 t13 = 2.2 34.0% P = 3310�5 t13 = 5.8
Soil away from pine P = 0.047 t12 = 2.2 P = 0.007 t12 = 2.8
Soil near pine P = 0.017 t13 = 2.4 18.4% P = 5310�5 t13 = 5.6
Ectomycorrhizal fungi
Litter away from pine P = 0.420 t12 = 0.2 P = 0.047 t12 = 1.8
Litter near pine P = 0.014 t13 = 2.5 P = 0.005 t13 = 2.9
Soil away from pine P = 0.421 t12 = 0.2 P = 0.016 t12 = 2.4
Soil near pine P = 0.009 t13 = 2.7 P = 0.004 t13 = 3.1
Plant pathogens
Litter away from pine P = 0.466 t12 = 0.09 P = 0.421 t12 = 0.42
Litter near pine P = 0.055 t13 = 1.72 P = 0.451 t13 = 0.12
Soil away from pine P = 0.078 t12 = 1.51 P = 0.445 t12 = 0.14
Soil near pine P = 0.314 t13 = 0.49 P = 0.321 t13 = 0.47
Animal pathogens
Litter away from pine 87.8% P = 0.0003 t12 = 4.6 83.0% P = 0.0003 t12 = 4.6
Litter near pine P = 0.105 t13 = 1.3 P = 0.04 t13 = 1.9
Soil away from pine P = 0.07 t12 = 1.57 P = 0.017 t12 = 2.4
Soil near pine P = 0.04 t13 = 1.9 82.2% P = 0.001 t13 = 3.7
Mycoparasites
Litter away from pine P = 0.011 t12 = 2.6 P = 0.0035 t12 = 3.2
Litter near pine c. 500% P = 0.0003 t13 = 4.6 P = 0.08 t13 = 1.5
Soil away from pine P = 0.278 t12 = 0.6 P = 0.5 t12 = 0
Soil near pine P = 0.155 t13 = 1.1 P = 0.1 t13 = 1.4

Statistically significant responses, following �Sid�ak correction for multiple testing (P < 0.0013) are in bold and include effect size and direction (increase
shown with upward arrows and decline shown with downward arrows). The effect (%) was calculated based on obtained mean read counts (for abun-
dance) or number of operational taxonomic units (OTUs, richness). Arbuscular mycorrhizal, lichenicolous, and lichenized fungi were not analysed owing to
low OTU richness.
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indirectly by warming of residual litter postfire, seems the most
likely explanation for stronger fire effects on fungal litter commu-
nities compared with more-insulated soil fungal communities.

Proximity to pines played a small role in structuring fungal
communities and did not alter microbial decomposition or fire
effects on communities. We anticipated litter and soil to support
different fungal communities with distinct decomposition in
plots under pines compared with areas away from pines. Stronger
responses to fire near pine communities were also expected, as
higher contribution of resinous, lignified pine needles (vs grass
leaves) in litter leads to more-severe fires (Ellair & Platt, 2013;
Platt et al., 2016). Repeated fires may have created fungal com-
munities in litter and upper soil layers better adapted to fire gen-
erally and precluded fungal adaptation with specific regard to
overstory pine proximity (Priha et al., 1999; Osono et al., 2014).
The trend for ectomycorrhizal fungi near pines to decline with
fire is consistent with their presumed sensitivity to fire and may
be biologically important.

The loss of saprotrophic fungi with recent fire paralleled decli-
nes in microbial decomposition of new litter. Fungal community
structure was clearly correlated (R = 0.495) with decomposition
rates, and fungal saprotrophs were the most fire-sensitive fungi,
declining in richness or abundance, across multiple communities
(e.g. litter away from pines). Following fire, saprotrophic com-
munities of litter had a significantly higher proportion of
ascomycetes and lacked effective basidiomycete decomposers,
including those of the genus Mycena (Boberg et al., 2011). We
expected saprotrophs to recolonize following fire, due to input of
new pine needles and plant leaves that both serve as new sub-
strates and contain facultative fungal saprotrophs (e.g. endo-
phytic and phylloplane fungi; Boddy et al., 2007). Nonetheless,
no such recovery in decomposition was observed even 9 months
after recent fire, suggesting that full recovery of saprotrophic
function may be delayed until the second postfire growing sea-
son.

Shifts in fungal communities and microbial decomposition are
likely to alter fuel loads in ways that may change the intensity
and spread of future fires. Fire intensity and spread in pyrogenic
systems is related to fine-fuel accumulation, such as long-leaf pine
needles and grass litter. The decline in fungal saprotrophs and
slower rates of decomposition could, therefore, result in more
rapid accumulation of new fine fuels. Greater fuel loads, in turn,
will likely increase the intensity and especially spread of new fires
across the previously burned savanna (cf. Platt et al., 2015).
Although more research is needed, this process may represent a
feedback loop, with fires supressing saprotrophic organisms and
resulting in higher likelihood of new fires. Future research that
integrates fungi and other decomposers into fire ecology and fire
regime models would improve our understanding of the mainte-
nance of these threatened ecosystems.

Pine savannas harbour a unique diversity of fire-adapted fungi
that are worthy of more study. We identified a high diversity of
fungi in the pine savanna, only transiently present in relation to
fire. The > 500 fungal species only present immediately after fire
could be either fire tolerant, able to recolonize quickly after fire,
or benefit from decline in other fire-sensitive species. For

example, increase in mycoparasitic fungi following fire was likely
related to increased susceptibility of other fungi after heat expo-
sure. Fire-responsive species may represent a hidden diversity
(sensu Partel, 2014), present only in pyrogenic systems and only
within a limited timespan after fire. Few taxa that were favoured
by fire in pine savanna have been previously reported as ‘fire tol-
erant’ in other studies. For example, some species of Russula
(Horton et al., 1998) and Tomentella (Baar et al., 1999) have
both previously been reported to respond positively to wildfire
but did not show any significant response to fire in our study.
The genus Periconia had the strongest positive response to fire in
our study, but to our knowledge has not been previously reported
as fire tolerant. In addition, many ‘pyrophilic’ fungal genera iden-
tified in other studies, including Coltricia (Visser, 1994),
Wilcoxinia (Fujimura et al., 2005), Pyronema, Morchella (Smith
et al., 2016), and Thelephora (Visser, 1994), were not present in
our system. Only Cenococcum was previously reported as fire
resistant (Kipfer et al., 2010) and also increased in richness in our
study (in soil communities away from pine).

Changing perspective on pyrogenic ecosystems

Pine savannas harbour a unique and diverse assemblage of fire-
adapted fungi. As with plants and animals (Peet et al., 2018),
maintenance of this fungal diversity requires a heterogeneous
savanna landscape sustained by recurrent fires. We found that
fungal communities were much more responsive to recent fire
than to plant communities or soil properties. Given the impor-
tance of fungi to ecosystem processes such as decomposition,
nutrient cycling, and plant productivity (Rayner & Boddy,
1988), it is likely that fungi are important in maintaining such
savanna ecosystems. Today, pine savannas represent < 3–4% of
their original extent (Outcalt & Sheffield, 1996; Frost, 2006;
Noss et al., 2015). As proposed by Peet et al. (2018), managing
these biomes using frequent prescribed fire that mimics evolu-
tionary fire regimes is essential for conservation of their biota,
and such fires may be crucial for microorganisms such as fungi.
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