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BACKGROUND: All vascular plants associate with
fungi and bacteria—the microbiome. Root asso-
ciations with mycorrhizal fungi benefit most
plants by enhancing their nutrient access and
stress tolerance. Mycorrhizal fungi also medi-
ate plant interactionswith other soilmicrobes,
including pathogens and mycorrhizosphere
mutualists that produce vitamins and protect
against antagonists. Through these functions,
mycorrhizal root symbionts influence the be-
lowground traits of plants, regulate plant-plant
interactions, and alter ecosystem processes. Ex-
tensivemycorrhizal networks physically connect
conspecific and heterospecific plant individuals
belowground, mediating nutrient transfer and
transmission of phytochemical signals. Arbus-
cular mycorrhiza (AM), ectomycorrhiza (EcM),
ericoid mycorrhiza (ErM), and orchid mycor-
rhiza (OM)have a distinct evolutionary history,

anatomy, and ecology, thereby differently af-
fecting plant protection, nutrient acquisition,
and belowground C and nutrient cycling.

ADVANCES: Mycorrhizal fungi are commonly
the key determinants of plant population and
community dynamics, with several principal
differences among mycorrhizal types. We syn-
thesize current knowledge about mycorrhizal
effects on plant-plant interactions and ecolog-
ical specialization. We conclude that mycorrhi-
zal associations per se and fungal diversity and
mycorrhizal types directly or indirectly affect
plant dispersal and competition that shape
plant populations and communities, and regu-
late plant coexistence and diversity at a local
scale. AmongAMplants, which represent nearly
80% of plant species globally, mycorrhizal asso-
ciations andbelowgroundhyphal networks tend

to intensify intraspecific competition and al-
leviate interspecific competition by promoting
the performance of inferior competitors. In AM
systems, fungal diversity enhances plant diver-
sity and vice versa, by providing species-specific

benefits and suppressing
superiorcompetitors.Com-
pared with other mycor-
rhizal types, EcM fungi
provide substantial pro-
tection against soil-borne
pathogensby ensheathing

feeder roots and acidifying soil. Pathogen sup-
pression leads to positive plant-soil feedback
that promotes seedling establishment near
adult trees, which can result inmonodominant
plant communities with a low diversity of vari-
ous organismgroups. Orchids producemillions
of dust seeds with high dispersal potential to
encounter compatible OM fungal partners,
which nourish plants, at least in the seedling
stage. Species of Ericaceae achieve competi-
tive advantage and large population densities
by shedding allelopathic litter and establish-
ing ErM root symbiosis with selected groups
of ubiquitous humus saprotrophs that have
evolved efficient enzymes to access nutrients
in recalcitrant organic compounds in strongly
acidic environments.

OUTLOOK: Increasing evidence suggests that
mycorrhizal fungi drive plant population biol-
ogy and community ecology by affecting dis-
persal and establishment and regulating plant
coexistence. Plant-fungal mycorrhizal associa-
tions per se and interlinking hyphal networks
synergistically determine the functional traits
and hence autecology of host plants, which is
best reflected in the specialized nutrition and
dispersal of orchids. Habitat patches dominated
by either positive plant-soil feedback near EcM
plants or negative conspecific feedback near
AMplantsmay generate distinct regeneration
patches for different plant species. Further-
more, niche differentiation both within and
amongmycorrhizal types enhances coexistence
by leveraging interspecific competition through
different rooting depths, foraging strategies,
and soil nutrient partitioning.We still lack crit-
ical information about themechanistic basis of
several processes, such as interplant nutrient
transfer through mycelial networks and the
principles of carbon-to-nutrient exchange and
trading in the mycorrhizal interface, as well as
kin recognition andpromotion.Understanding
these processes will enable us to improve pre-
dictions about the impacts of global change
and pollution on vegetation and soil processes
and to elaborate technologies to improve yields
in agriculture and forestry.▪
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Scheme indicating how mycorrhizal types (circles) differ in their effects on plant population- and
community-level processes (squares). Blue lines, positive effects; red lines, negative effects; green lines,
overlap of plant taxa among mycorrhizal types; pink lines, overlap of fungal taxa among mycorrhizal types.
Line breadth indicates relative effect strength.IL
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and community biology
Leho Tedersoo1*, Mohammad Bahram2, Martin Zobel3

Mycorrhizal fungi provide plants with a range of benefits, including mineral nutrients and protection from
stress and pathogens. Here we synthesize current information about how the presence and type of
mycorrhizal association affect plant communities. We argue that mycorrhizal fungi regulate seedling
establishment and species coexistence through stabilizing and equalizing mechanisms such as soil
nutrient partitioning, feedback to soil antagonists, differential mycorrhizal benefits, and nutrient trade.
Mycorrhizal fungi have strong effects on plant population and community biology, with mycorrhizal type–
specific effects on seed dispersal, seedling establishment, and soil niche differentiation, as well as
interspecific and intraspecific competition and hence plant diversity.

P
lant ecology has traditionally focused on
community responses to abiotic varia-
bles, competitive interactions among
plant individuals, and aboveground
herbivory (1).However, in recent decades,

it has become clear that dispersal, speciation (2),
and particularly symbiotic associations (3) also
play important roles in plant population and
community biology. Therefore, belowground
interactions have been increasingly incorpo-
rated into species coexistence models (4).
Herbivores, microbial antagonists, andmutu-
alists differentially affect the fitness of indi-
vidual plants and mediate intraspecific and
interspecific competition and hence coexistence
(3–5). Whereas the detrimental effects of par-
asites and pathogens can be relatively easily
observed, the benefits of mutualistic micro-
organisms such as mycorrhizal fungi are not as
immediately apparent in natural conditions (5),
and consequently their effects on plant popula-
tions and communities are less well understood.
Mycorrhizal associations benefit most ter-

restrial plants by providing enhanced nutri-
ent access and tolerance to abiotic and biotic
stress (6, 7). Mycorrhizal fungi mediate plant
interactions with the soil microbiome, includ-
ing pathogens and mycorrhizosphere mutu-
alists that fix atmospheric nitrogen, take up
phosphorus, produce vitamins, and/or pro-
tect against antagonists (8). Through these
functions, mycorrhizal root symbionts drive
the belowground traits of plants (9), regulate
plant-plant interactions (5), and alter ecosys-
tem processes (10) along with other biotic and
abiotic drivers. Extensive commonmycorrhizal
networks (CMNs) physically connect con-
specific and heterospecific plant individu-

als in soil, governing nutrient transfer into
plants and transmitting phytochemical sig-
nals (11). There are four principal types of
mycorrhiza—arbuscular mycorrhiza (AM),
ectomycorrhiza (EcM), ericoid mycorrhiza
(ErM) and orchidmycorrhiza (OM)—which dif-
fer in their anatomy and evolutionary ecology
(Table 1) (6, 12). Recent studies have revealed
substantial differences among mycorrhizal
types in plant nutrient acquisition, soil C and
nutrient cycling, and the capacity to protect
against soil-borne pathogens (10, 13) These
differences have global-scale consequences
for soil C sequestration and for mitigating N
pollution and climate warming (14, 15).
Several authors have reviewed the effect of

mycorrhizas on plant community ecology, with
a strong emphasis on AM in grassland ecosys-
tems or OM (5, 16). However, recently published
controlled ecological experiments and compar-
ative studies in ecophysiology, nutrient cycling,
and plant-soil feedback (17–20) extend the
mechanisms of mycorrhizal impact and sug-
gest several key differences among mycorrhi-
zal types.
Herewe integrate results fromexperimental

and observational studies from several dis-
ciplines and demonstrate that various stabi-
lizing and equalizing mechanisms related to
mycorrhizal associations regulate plant coexist-
ence and diversity at local plant community
and landscape levels (Fig. 1). We aim to answer
twomajor questions: (i) What are the principal
mechanisms by which mycorrhizal associa-
tions affect plant population and community
ecology? and (ii) how do themechanisms differ
betweenmycorrhizal types? Finally, we provide
a synthesis of mycorrhizal and mycorrhizal-
type effects on plant biology.

Dispersal and establishment

To establish in a given community, viable dia-
spores first need to reach the target habitat.

Plant distribution is often dispersal-limited;
that is, not all potential community members
reach suitable habitats (21). For many mutu-
alistic associations, and in particular those
involving plant taxa with negligible photo-
synthetic capacity, a plant individual has
to encounter a fungal symbiont during the
seedling establishment phase (16, 22). Lim-
itation of suitable partners may occur with
higher probability when the host specificity
of associations is high, which is relativelymore
common among OM and EcM associations
than among other mycorrhizal types (23). For
example, generalist EcMhost plants weremore
efficient postglacial dispersers than specialists,
perhaps owing to the better access to appro-
priate symbionts in new habitats (24).
Plant mycorrhizal types differ somewhat

in their primary dispersal vectors: Nearly all
ErMplants are animal- or wind-dispersed, and
OM plants are wind-dispersed, but EcM and
AMplants exhibitmultiple dispersal strategies
(25). Certain angiosperms such as orchids (all
known species) produce dust seeds, which can
disperse over long distances. At the same time,
dust seeds lack energy reserves, and therefore
seedlings rely strongly on symbiotic fungiduring
the early growth stages (22, 26). Similarly, the
dust-sized spores of pteridophytes disperse effi-
ciently, and the gametophytes of some species
may bemycoheterotrophic (receivemuch of the
C from fungi), requiring a specific fungal part-
ner (22). Among such groups, the presence of
suitable fungi at a target site or codispersal of
partners becomes a prerequisite for themain-
tenance and establishment of plant populations.
Although fungi produce microscopic dia-

spores, they may also be dispersal-limited (27).
For example, dispersal limitation of EcM fungi
and plants hampers their establishment in
vegetation matrices dominated by AM or ErM
species (27, 28). Most species of EcM fungi
have limited distribution ranges that are com-
monly shaped by those of their hosts (29). Con-
versely, the saprotrophic ErM fungal species
exhibit cross-continental distributions, and
their inoculum is present nearly everywhere
(30). Similarly, many AM fungal taxa display
nearly global distributions despite their relatively
large propagule size—spores or root fragments
colonized by hyphae—indicating efficient long-
distance dispersal (31). Unlike the sexual spores
of most other fungi, AM fungal glomerospores
can tolerate seawater for >1 week (32).
To conclude, dispersal limitation is a com-

mon ecological phenomenon in both mycorrhi-
zal plants and fungi, whichmay to a relatively
greater extent affect establishment of plantswith
obligately mycorrhizal associations. Mycorrhiza-
dependent dispersal limitation tends to be
relatively more important in determining the
establishment success andpopulationdynamics
of OM and EcM plants because of their gen-
erally high partner specificity.
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Belowground fungal linkages
The common mycelial network (CMN)
Genetic individuals of mycorrhizal fungi form
CMNs in soil, connecting the root systems of
conspecific and heterospecific plants of various
ontogenetic stages (11). CMNs among plant
species are strongly compartmentalized by
mycorrhizal type (33) and to a lesser extent by
association specificity (23). CMNs may redis-
tribute carbon and nutrients among plants,
enhance belowground signaling by plants, and
regulate competition (11, 34).
The mycelium of mycorrhizal fungi trans-

ports plant-derived carbon into soil in the
form of sugars, amino acids, and polyols to
sustain the mycorrhizosphere microbiome
(8, 34). The largest plant individuals with
greatest net photosynthesis probably con-
tribute most to the maintenance of mycor-
rhizal networks in AM and EcM symbioses.
Besides maintaining the C demand of many
nonphotosynthetic plants, the interconnect-
ing mycelia transport C and macronutrients
between photosynthesizing plants, represent-
ing 0 to 10% of net C movement (11). Using
stable isotope labeling of carbon dioxide (CO2)
in a field experiment, Klein et al. (35) estimated
that 40% of fine root carbon and 4% of total
carbon originated from other trees.
Even if the rate of interplant C transfer is

relatively low, it may be biologically important
if it sustains the growth of shaded understory
plants, especially seedlings at the stage of ini-
tial establishment. In EcM plants, Pickles et al.
(36) demonstrated that relatively more C is
transferred to kin than non-kin seedlings of
Pseudotsugamenziesiibymycorrhizal networks.
Although the mechanisms controlling carbon
flow remain poorly understood, these results
suggest that plants may be able to selectively
provide their offspring with a competitive ad-
vantage in a way similar to promoting growth
of root suckers in clonal plants. Enhancing kin

seedlings relative to other conspecific seedlings
may reduce genetic heterogeneity in plant pop-
ulations, especially at fine scales.
Macro- and micronutrients also move be-

tween plants (37, 38). N transfer may be bio-
logically relevant in communities that comprise
plants with large differences in N nutrition and
N content, such as those containing actinorhizal
and rhizobial plants. However, the net positive
N transfer recorded from Eucalyptus sp. to the
actinorhizal Casuarina cunninghamiana (37)
runs counter to the hypothesis of nutrientmove-
ment from nitrogen-fixing plants to other plants
and suggests that the mechanisms determining
actual N transfer rates are not fully understood.
Several other experiments demonstratedN or
P flow via host-specific EcM fungi from a non-
host to ahost plant (38, 39).However, compared
with mycorrhizal transportation, indirect nutri-
ent transfer pathways, by root and leaf litter
decomposition or uptake of root exudates, are
estimated to be more important (38). Thus, it
appears that AM and EcM fungi generally play
aminor role in mutualistic interplant nutrient
transfer.
Mycorrhizal fungi communicate with plants

using organic acids, volatile organic compounds
(VOCs), and phytohormones to initiate forma-
tion of the symbiosis (40) and to communicate
warnings (41). AM and EcM CMNs are known
to mediate plant-to-plant belowground signal-
ing (42); and the same processesmay, in theory,
also occur through ErM, OM, and endophytic
interactions. AM fungi deliver warning signals
from pathogen- or herbivore-attacked plants
to healthy individuals, inducing expression of
defense-related genes and production of stress-
related molecules (42–44), which lead to signal
transfer via jasmonic acid and salicylic acid
pathways (44). These warning systems may
operate within species or at higher taxonomic
levels (43). Besides providing warnings, AM
and EcM fungi mediate plant kin recognition

(and potentially self-recognition) in soil (36, 45),
which is probably communicated via root exu-
dates (46). Efficient signal transmission may be
under positive selection in both plants and fungi
to maintain a stable environment and nutrient
supply (42).
Taken together, signaling and nutrient

transfer among plants are strongest between
kin, which allows us to hypothesize that adult
plants may support their direct offspring rela-
tive to other seedlings establishing in the root-
ing zone (Fig. 2). Conspecific non-kin and
heterospecific plants from the samemycorrhi-
zal type probably experience weaker commu-
nication and more variable costs and benefits
from CMNs. Plants belonging to different my-
corrhizal types are generally not connected by
belowground signaling pathways and nutrient
transfer, apart from occasional C or nutrient
loss by means of parasitism.

Nutrient trade

Mycorrhiza can shape plant communities
through its differential effects on plant species.
Large plant individuals that contributemore C
to mycorrhizal symbionts gain relatively more
benefits from nutrient uptake by mycobionts
(47), implying nutrient trading. Indeed, AM
plants manipulate C flow to symbionts to pro-
mote root colonization by those fungi supply-
ing most mineral P or N (48). Recently, the
C-to-N trading model was extended to EcM
symbiosis (49). For plants, the benefits of trad-
ing and partner selection are greater in con-
ditions of nutrient limitation and high carbon
availability (48).
Modeling studies indicate that both plants

and fungi benefit from multiple trading part-
ners that have no direct access to the resources
limiting their performance (50). This leads to
selection for more nutrition-specialist partners
and thereby explains the rapid evolutionary loss
of soil C acquisition capacity in mycorrhizal
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Fig. 1. Overview of stabilizing and
equalizing mechanisms by which
mycorrhizal associations promote
plant coexistence and diversity and
plant population dynamics. Mechanisms
in the center have both stabilizing and
equalizing aspects. Green, red,
blue, and yellow boxes represent
plants, various pathogens, direct
mycorrhiza-related mechanisms, and
mycorrhiza-associated processes,
respectively. NM, nonmycorrhizal.
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fungi (51) and dominance ofmycorrhizal plants
in most terrestrial ecosystems (12). With an
increasing number of fungal traders, nutrients
become “cheaper” to plants (52). The presence
of multiple trading partners also favors more
cooperative symbionts and secures greater
stability in the symbiosis (48, 50).

Stabilizing mechanisms of plant coexistence

Stabilizingmechanisms of coexistence enhance
negative intraspecific interactions relative to
interspecific interactions. These mechanisms
include resource partitioning among species,
which results in relaxing interspecific compe-
tition, and frequency-dependent herbivory, re-
sulting in greater losses of common species
(53). Fluctuations in population densities and
environmental factors in space and time may
also contribute to resource partitioning and
thus to species coexistence (53). However,
classical coexistence theory does not address
mutualistic relationships such as mycorrhiza.
Here we outline howmycorrhizal associations
contribute to stabilizing mechanisms.

Negative microbial feedback

Negative density dependence may arise not
only from intraspecific competition but also

from species-specific pathogens under their
preferred hosts (5, 54, 55). In natural and ex-
perimental conditions, NM and AM plants
experience more negative feedback from their
soil biota compared with EcM plants, suggest-
ing that EcM fungi protect plant root systems
relativelymore efficiently, comparedwith other
mycorrhizal guilds (13, 17, 18). Indeed, AM
plants accumulate relativelymore pathogenic
fungi in their mycorrhizosphere (55). Fur-
thermore, in temperate and subtropical forests,
EcM saplings and adult trees tend to exhibit
positive density dependence, whereas AM trees
show neutral density dependence (55–57). A
combination of positive density dependence
and differences in soil nutrition may lead to
clustering of EcM tree seedlings around adult
EcM trees and a lack of AM tree saplings
around conspecific adult AM trees (19, 57). Over
time, aggregation of individuals belonging to
a single species can lead to monodominance
(>60% of basal area or stems belong to a sin-
gle species), which is a particularly common
phenomenon in EcMplant communities (58).
The magnitude of negative feedback may

also differ withinmycorrhizal types, depend-
ing on the level of root colonization. Plant
species with potentially high growth rates

and competitive ability tend to exhibit low
AM root colonization and suffer most from
negative soil feedback, compared with slow-
growing species, which tend to experience high
AMcolonization and suffer less fromnegative
feedback (59).

Exclusive partners

Potentially suitable partners represent a biotic
niche space for plants and fungi that form
mycorrhiza. Biotic niche differentiation is
expected to reduce interspecific competition
relative to intraspecific competition and hence
enhance coexistence. Partner exclusivity (host
specificity) is most common in mycoheterotro-
phic associations, where the EcM (“monotro-
poid” subtype) Ericaceae and OM Orchidaceae
are highly dependent on specific, exploited
fungal partners (22). In EcM systems, a few
Scleroderma spp. are exclusive partners of the
gymnosperm Gnetum spp. Conversely, EcM
plant species of Pinus,Alnus, and Pisonia host
multiple highly specific fungal species (60).
The facultative nature of symbiosis for ErM
fungi may disfavor specificity in ErM associ-
ations. In AM fungi, host specificity may be
lacking because of asexuality and the presence
of multiple heterogeneous nuclei in hyphae,
which presents an obstacle to the synchronized
evolution of specificity. Although there is cur-
rently no direct evidence for partner specificity
favoring coexistence in mycorrhizal systems
[but see (61)], specialization enhances coexist-
ence in the plant-pollinator mutualistic system
(62). Besides providing a stabilizingmechanism
through biotic niche differentiation, special-
ist partners may enhance coexistence via en-
hanced benefits (see equalizing mechanisms).

Equalizing mechanisms of plant coexistence

Equalizing mechanisms reduce fitness differ-
ences between species and render interspecific
plant competition more balanced (63). From
this perspective, signaling and nutrient trading
can be viewed partly as equalizingmechanisms
in cases where inferior competitors linked to
mycorrhizal networks are beneficiaries. Coex-
istence is enhanced ifmycorrhiza benefits the
competitively inferior species relatively more
than fast-growing dominant species.

Mutualistic mycorrhizal types

Equalizing effects of mycorrhizal colonization
have been demonstrated in multiple exper-
imental systems with AM (63) and EcM (64)
plants. However, there are also conflicting
examples from studies of native and invasive
plants, where mycorrhiza enhances dominant
species and thus impedes coexistence (65).
Mycorrhizal dependency—the relative growth

benefit of mycorrhizal association—differs
among genotypes and species of plants belong-
ing to all mycorrhizal types (59). In AM plants,
early successional species and facultatively
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Fig. 2. Mycorrhizal network effects on carbon and signal transfer among plants. From left to right:
focal (donor) plant; conspecific kin, conspecific non-kin, heterospecific but same mycorrhizal type,
mycoheterotroph (MH; overlapping symbionts), heterospecific but other mycorrhizal type, and non-
mycorrhizal (NM) plant. Colored lines indicate mycorrhizal fungal networks of different species or different
mycorrhizal type (blue). Arrowheads depict potential antagonism among mycorrhizal fungi and plants of
another mycorrhizal type or NM habit. Arrows indicate the direction of carbon and signal transfer; line width
depicts the relative strength of transfer; dashed lines indicate weak and potentially biologically unimportant
associations; gray, crossed-out lines indicate no association. Lines with question marks represent
hypothetical flows that have not been studied.
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mycorrhizal taxa exhibit lower growth re-
sponses than late successional taxa (65). These
differences are usually enhanced in species
mixtures comparedwithmonocultures, result-
ing in enhancement of competitively inferior

plant species (if these species are more my-
corrhizal dependent) and thus promoting co-
existence (59).
In nonspecificmycorrhizal associations, geno-

types and species of mycorrhizal fungi benefit

the growth of plant species differentially (65–67).
Natural mycorrhizal fungal communities also
differ in their effects on plant species (66, 67).
This renders observed mycorrhizal coloniza-
tion effects on plant performance variable and
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Table 1. Evolutionary and functional differences among plant mycorrhizal types. Ma, millions of years ago; NA, not applicable.

Arbuscular mycorrhiza Ectomycorrhiza Ericoid mycorrhiza Orchid mycorrhiza Nonmycorrhizal

Plant symbionts
(percent of plant
species) (12)

Most vascular
plants (78%)

30 lineages of
angiosperms and
gymnosperms;

mostly trees (2%)

Ericaceae,
Diaspensiaceae (1.4%)

Orchidaceae (10%)
Several angiosperm
groups (Brassicaceae,

Proteaceae; 8%)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Typical habitat
(15, 97)

Ubiquitous,
particularly
grasslands,
croplands,

temperate and
tropical biomes

N-poor soils,
mostly temperate
and boreal forests,
Mediterranean
biomes, patchily

in lowland
rainforests

Highly acidic soils
with mostly high
organic content,

usually cold tundra,
boreal forests, and
montane habitats

Ubiquitous but
never dominant,
including epiphytic

habitats

Extreme: disturbed,
early successional,

nutrient-rich, P-starved,
cold, aquatic habitats

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Fungal symbionts
(percent of
described
fungal species;
our estimates)

Glomeromycota,
Endogonomycetes
(Mucoromycota);
obligate mutualists

(<0.5%)

>80 lineages of
Basidiomycota,

Ascomycota, and some
Endogonomycetes;

obligate
mutualists (~15%)

Multiple lineages of
Ascomycota and

some Basidiomycota;
free-living

saprotrophs and
root endophytes

(<0.1%)

Ceratobasidiaceae,
Serendipitaceae,
Tulasnellaceae (all
Basidiomycota),
sometimes EcM
fungi; free-living

saprotrophs (<1%)

None, sometimes loose
associations and

nutritional benefits from
free-living fungi

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Anatomy (12)
Intracellular
“arbuscules”

Intercellular
“Hartig net,”
sheathing
“mantle”

Intracellular “coils”
Intracellular

“pelotons,” their
digestion

No specialized
structures, sometimes

AM hyphae
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Extraradical
hyphae (6)

Aseptate-
multinucleate; few

to abundant

Septate; few to
abundant; may

form rhizomorphs
and high biomass

Septate; abundant
Septate; few to

abundant
NA

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Evolutionary
history (12)

>450 Ma
150 to 180 Ma and

onward
~100 Ma ~110 Ma ~110 Ma and onward

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Nutrient
acquisition
(6, 10, 51)

Mostly P; low C
biodegradation

capacity

N and P; moderate
C biodegradation

capacity

N and P; strong C
biodegradation

capacity

N and P, some C;
strong C

biodegradation
capacity

N and P; no C
biodegradation capacity

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Plant dispersal (25) Variable Variable
Zoochory,

anemochory;
efficient

Anemochory; dust
seeds; highly
efficient

Mostly anemochory;
efficient

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Seedling
establishment

Seldom limited by
mutualist
availability

Often limited by
mutualist

availability; kin
promotion (36)

Mutualists obtained
from soil and roots
of other plants (30)

Critically limited
by specific
mutualist

availability (22)

Prefers mycorrhiza-free
soil (12)

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Plant soil
feedback
(13, 17, 18)

Negative or
neutral

Positive or neutral Not addressed Positive (22) Negative

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Allelochemical
production
(79, 82)

Uncommon Common Very common Not addressed
Variable (substantial in

Brassicaceae)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Fungal diversity
effects

Positive on plant
diversity and

productivity (78)

None or weakly
positive (78)

Not addressed
Biotic niche to
species (61)

Not addressed

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Mycorrhizal means
of altering plant
co-occurrence and
diversity (see text)

Differential
benefits, hyphal
networks, trading

None intraguild;
suppresses overall
plant diversity

None intraguild;
suppresses overall
plant diversity

Not addressed
Suppression via

resource competition
and parasitism

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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strongly dependent on the selection of exper-
imental organisms (66). From an ecological
perspective, species- or strain-specific benefits
promote C for nutrient trading and partner
selection.Hence, the availability ofmore fungal
genotypes and species with complementary
benefitsmay promote plant species coexistence
and improve community productivity (68).
In mycorrhizal associations, specialist sym-

bionts may provide enhanced benefits to their
partners. If these partners are superior com-
petitors, such as most large trees from the
Pinaceae and Fagaceae families, their special-
ist fungi may promote interspecific competi-
tion. Conversely, inferior competitors, such as
Alnus and Salix species, may potentially gain
a competitive advantage. However, there is, as
yet, no evidence that host-specific and non-
specific EcM fungi provide differential benefits.
From an evolutionary perspective, host-specific
mycorrhizal partners can be viewed as trapped,
because they can only efficiently interact with
a limited number of congeneric hosts and are
therefore forced to be highly cooperative to
survive. Although direct evidence is lacking,
specific partners may have evolved more ef-
ficient communication and nutrient transfer
mechanisms than their generalist competi-
tors, which may somewhat relax the cost of
cooperation. Laboratory experiments reveal
that specialist fungimay deliver resources from
nonhosts to hosts (39), but the occurrence and
biological importance of this phenomenon re-
quire verification in natural conditions.

Mycoheterotrophs

Mycorrhizal networks play a fundamental role
in equalizing interspecific plant competition
in communities where mycoheterotrophs are
found. A strategy of theft rather than fair
trading has evolved amongmycoheterotrophs,
in which specialization reflects a host-parasite
arms race, where the plant aims to gain greater
control over a particular fungal “victim” (22).
Fully or partly mycoheterotrophic plants tap
into EcM or AM fungal networks and acquire
some or all of their energy viamycorrhizal fungi
from dominant plant individuals (22). All my-
coheterotrophs are small and slow-growing, and
most occur at low abundance; hence, draw-
ing resources from overstory species allows
them to coexist withmore competitive species.
Even when they occur at high abundance (e.g.,
Pyroleae), and despite sometimes displaying
very high rates of transpiration, there is cur-
rently no evidence that mycoheterotrophs drain
C in sufficiently large amounts to damage nurse
trees (69).
Most mycoheterotrophs specialize on a par-

ticular fungal species, narrow group of species,
or genus during the early germination and
adult stages (22). Although there is evidence
for coevolution between plants and fungi in
some orchid genera, abrupt partner shifts are

common in the mycoheterotrophic Orchida-
ceae and Ericaceae (70). Because of relatively
specific symbiotic associations, mycohetero-
trophs, including orchids, present a relatively
high number of reproductively isolated sym-
patric races and low hybridization rates. Shift-
ing fungal or pollinator partners in populations
of orchid species may characterize these most
common forms of specialization and underlie
the hyperdiversity and ultrahigh diversification
rates observed in Orchidaceae (22, 70). Biotic
niche partitioning through association with
different fungal symbionts promotes the co-
existence of multiple orchid species (16). How-
ever, mycoheterotrophs have historically very
high rates of extinction due to the evolution of
multiple nonviable partner shifts and extinc-
tions of intimate partners (70). Both mycohe-
terotrophic and autotrophic specialist plant
and fungal species would themselves be ex-
tremely threatened by the extinction of their
sole partner.

Initially, mutualistic fungal nursing of seed-
lings in small-seeded plants triggered the loss
of photosynthesis, further seed size reduction,
and autogamy in mycoheterotrophs to secure
efficient dispersal (26). Increasing specializa-
tion toward fungal and pollinator partners has
led to high ecological specificity and increased
diversification rates at population and species
levels, which underlie the high richness and
sometimes strong contribution to local-scale
plant diversity observed among orchids.
Partialmycoheterotrophy has long been con-

sidered an uncommon feature characteristic of
certain orchids and EcM-associated ericaceous
plants. However, recent stable isotopic evi-
dence in natural plant communities suggests
that this phenomenon may be widespread
(>10% of plant species) among shade-tolerant
AMherbs that develop hyphal coils rather than
typical arbuscules in root cells (71). As these
herbs are slow-growing, supplementary C from
dominant AM trees and grasses received via
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Fig. 3. Relative arbuscular mycorrhizal (left pane) and ectomycorrhizal (right pane) regeneration
niches and the principal differences among mycorrhizal types in plant-mutualist-pathogen relation-
ships (insets). The regeneration niche incorporates spatial heterogeneity in light competition (shade), root
competition, the extent of common mycelial networks, conspecific versus heterospecific nurse plants and the
same versus different mycorrhizal types. Symbol shapes indicate different mycorrhizal types (“spruce,”
ectomycorrhizal; “maple,” arbuscular mycorrhizal); symbol colors indicate different species. Double-sized
symbols indicate flourishing seedlings escaping from root competition and pathogens, and benefiting from
common mycelial networks. In the insets, blue and orange arrows indicate positive and negative effects,
respectively; arrow width depicts the relative importance of the effect; plant-to-plant diversity association is
considered here as a productivity-to-diversity relationship.
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CMNs may account for a previously unrecog-
nized equalizing mechanism promoting plant
coexistence.

Mycorrhizal fungi mediate competition

Mycorrhizal fungi regulate plant coexistence
either by amplifying or equalizing plant com-
petition. Classical plant ecology views com-
petition either as direct interference between
plant individuals or an indirect impact through
resource depletion (72), but actual competitive
interactions are much more complex owing to
the involvement of antagonists andmutualists,
including different mycorrhizal guilds.

Competitive effects of mycorrhizal fungi on plants

The availability of mineral nutrients may
limit the growth of both plants and fungi
in nutrient-poor ecosystems. In EcM eco-
systems, nutrients are immobilized in fungal
biomass to maintain mycelial structures and
maximize reproductive effort. This may lead
to a loss of nutrient-demanding AM plant
species and reduced primary production (73).
Competitive interactions between plant indi-

viduals may be shaped by interactions with
symbiotic fungi. For instance, EcM fungi
reducemycorrhizal root colonization of neigh-
boring AM herbs (74) and enhance the com-
petitive dominance of EcM trees over AM
trees (75) by promoting litter accumulation
and limiting access to nutrients (Fig. 3). Sim-
ilarly, AM fungi were found to exacerbate iron
deficiency in Eucalyptus seedlings and inhibit
their establishment in Australian AM-dominated
rainforest (76).
EcM and ErM fungi may reduce germina-

tion and growth of nonhost plants through
direct interactions or allelochemicals (77). As
yet there is no evidence for allelopathy in AM
fungi (78). Nonetheless, in both laboratory
and field experiments, AM fungi sometimes
distort the root tissues of non-AMplants, ham-
pering root development and functioning (78).
Controlled experiments show that incompatible
mycorrhizal interactions trigger defense mech-
anisms in nonhost plants and sometimes result
in C loss to interacting fungi (39).

Competitive effects of plants on
mycorrhizal fungi

Plant individuals can affect other plants by
influencing the mycorrhizal fungi associating
with their neighbors. By producing allelo-
chemicals and VOCs, plants may inhibit the
mycorrhizal fungi that associate with other
plants. Ericaceae species are well known for
producing phenolics-rich leaf litter that re-
tards the growth of both AM and EcM fungi
(18, 79, 80). By releasing allelopathic com-
pounds or altering soil chemistry, AM shrubs
reduce root length, root fungal colonization,
and fungal richness of EcM plants (81). Con-
versely, EcM trees can suppress AM coloniza-

tion of herbs via allelopathic litter or nutrient
competition (74). The relative importance of
allelochemicals in suppressing root coloniza-
tion of other mycorrhizal types remains poorly
understood owing to the design of experi-
ments, which typically lack intraguild controls
(i.e., testing the impact of allelochemicals on
conspecific individuals or on other species
from the same mycorrhizal type) in most ex-
periments (79).
Much information on the effects of allelop-

athy comes from studies of aggressive invasive
plants from the Brassicaceae and Chenopodi-
aceae families (82). These groups may have
evolved the NM habit along with a high con-
tent of allelochemicals in their roots to sup-
press AMandEcM fungi and hence, indirectly,
their mycorrhizal hosts (79). For example, the
highly invasive NM herb Alliaria petiolata
produces allelochemicals that severely reduce
the local abundance of EcM and AM fungi and
the degree to which they colonize other her-
baceous plants and trees (79).

Competitive effects of plants on plants
mediated by mycorrhizal fungi

Competition among plants may be related to
plant mycorrhizal type and mycorrhizal de-
pendence (the relative fungal benefits to plant
species). For instance, ErM plants shed allelo-
pathic and slowly decomposing litter, which
hampers the development of other plants. ErM
fungi with strong saprotrophic capacity render
ericaceous plants highly competitive in acidic,
nutrient-poor soils (30). Both AM and EcM
fungi can protect their host plants from the
detrimental effects of certain allelochemicals
or extend their impact beyond the rhizosphere
(82). In particular, AM fungi transport herbi-
cides and allelochemicals to competing plants,
hampering their growth up to 15 to 20 cm
distant from roots (83). Such synergistic effects
of plants and mycorrhizal fungi in alleviating
and redistributing allelochemicalsmaywell oc-
cur in other mycorrhizal types as well. Under
certain conditions, NM plants may also have
a competitive advantage. NM plants have
evolved several strategies to avoid direct nu-
trient competition, such as nutrient acquisi-
tion fromultrapoor soils or early colonization
of pioneer habitats where mycorrhizal com-
petitors perform poorly, as well as allelopathic
suppression of potential competitors (84).

Plant diversity and mycorrhiza

Experiments with AM plants and fungi have
shown that simultaneous colonization and
network formation by a diverse set of fungi
can synergistically promote coexistence and
diversity of plant species, compared to a sys-
tem with a low diversity of fungi (85). Field
studies in various natural ecosystems also sug-
gest that mycorrhizal fungal and plant diver-
sity are positively related (86, 87). Besides

increasing resource use complementarity (88),
high fungal diversity may enhance nutrient
trading (50), improve overall nutrient acquisition
by plants, and promote primary productivity
(85). In contrast to AM systems, experiments
with EcM plants have revealed no fungal di-
versity effect onhost performance or ecosystem
services (64), despite some evidence for parti-
tioning of organic P sources (89) and high
functional complementarity among EcM fun-
gal species (10, 51). However, the lack of such
effects may be related to studying seedlings
over a short time.
Across geographic scales, EcM-dominated

plant communities tend to be less diverse
than AM-dominated communities (90, 91).
The above-described mechanisms related to
altered nutrient availability (10) and accumu-
lation of organic material and allelopathic
compounds in EcM systems (79) provide plau-
sible explanations. Alternatively, differences
in plant diversity between EcM- and AM-
dominated habitats may be related to plant-
soil feedback. Because AMplants are relatively
vulnerable to soil-borne pathogen attack and
accumulate soil-borne pathogens, density-
dependent accumulation of taxon-specific
pathogens in the rhizosphere may suppress
the abundance of prevalent AM plant species
and hence contribute to the high plant diver-
sity in AM-dominated communities (5, 73, 92).
We suggest that these four mechanisms—
access to organic nutrients, accumulation of
organic material and allelopathic compounds,
and positive plant soil feedback—act synergis-
tically in EcM-dominated plant communities
tomaintain communitymonodominance over
multiple generations.

Different mycorrhizal types

In many terrestrial ecosystems, three or more
mycorrhizal types coexist, which may reflect
different biological mechanisms. Fungi from
all mycorrhizal types compete for mineral
nutrients, but their differential capacity for
organic nutrition enables a certain level of
resource partitioning. In boreal and temper-
ate forests, there is evidence for vertical niche
partitioning among fungi belonging to differ-
ent mycorrhizal types (93, 94). For example,
AM and ErM fungi specialize in uptake of
different forms of P (95), whereas AM and EcM
fungi partition sources of N (96). AM fungi can
only access a subset of P forms available to EcM
fungi (20), although this may be compensated
by a lower C cost to AM fungi. Fine-scale dis-
turbance and spatial heterogeneity of soil nu-
trients may further promote coexistence of
plants associating with different groups of
fungi (6, 97). Such niche differentiation among
plant mycorrhizal types potentially increases
competition within mycorrhizal types, while
enhancing coexistence of plants belonging to
different mycorrhizal types.
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Plant coexistence from a mycorrhizal
perspective: Synthesis
Plant nutrient acquisition strategies and re-
sistance to soil-borne pathogens strongly de-
pend on mycorrhizal associations. Fungal
partners belonging to different mycorrhizal
types modify local soil conditions and generate
habitat patches of differential quality, which
affects offspring establishment of both host
and nonhost plant species (19, 55). EcM and
ErM associations acidify soil by producing
recalcitrant litter, deplete available nutrients,
and produce allelochemicals (10, 82, 97), where-
as AM systems accumulate relatively more soil-
borne pathogens (13, 55). Therefore, the size
and distinctness of such habitat patches are a
function of plant traits related to mycorrhizal
associations, root and foliar chemistry, and
competition. The resulting local abiotic and
biotic heterogeneity creates specific regener-
ationniches for plantswith different functional
traits, including mycorrhizal type (75, 98, 99).
Although most plants preferentially establish
outside the zone of direct root competition and
shade, establishment of EcM plants seems to
depend most on the availability of preestab-
lished CMNs (19, 100). Orchids and most my-
coheterotrophic groups require the presence
of specific fungal species for germination and
growth. Establishment of AM plants tends to
fail under conspecific AM trees (19, 55) and
under EcM vegetation (13), their main regen-
eration niche being under heterospecific AM
plants (Fig. 3).
To conclude, local-scale coexistence of plant

species from differentmycorrhizal types is en-
hanced by mycorrhiza-mediated resource parti-
tioning. In EcM systems, positive soil feedback,
build-up of recalcitrant organic material in
topsoil, and access to nutrients in these organic
layers enhance dominance and lead to lower
diversity compared to AM systems. Conversely,
negative soil feedback and differential mycor-
rhizal effects favor coexistence of AM plants,
leading to high diversity of plants, soil mi-
crobes, and fauna.

Research needs

Despite insights from experimental mycorrhizal
research conducted duringmore than a century,
relatively little is known about the roles of
mycorrhizal fungi in shaping plant communi-
ties. We identify three major unresolved issues
and propose ways of addressing them.

Balanced incorporation of different mycorrhizal
types in experimental research

The relative ease of manipulating herbaceous
plants has favored use of AM symbiosis as a
model mycorrhizal association in plant ecol-
ogy (78), although difficulties in handling
uncultured fungal taxa limit the range of
possible experiments. We identified substan-
tial functional differences among plants and

fungi belonging to differentmycorrhizal types,
which invalidate generalization from AM-
basedmodels to other types of mycorrhiza. In
particular, knowledge about the function and
ecology of ErM associations needs to be im-
proved. To disentangle the actual role of my-
corrhiza in structuring plant communities,
ecologists should address systems in which
different mycorrhizal types are represented,
such as temperate deciduous forests, Medi-
terranean shrublands, and tropical montane
forests.

Mycorrhizal response to global change

Changes in climate, water, and nutrient avail-
ability, as well as invasions of plants and an-
tagonists, trigger major shifts in vegetation
and its associated microbiome (15). Changing
abiotic and biotic environmentsmay alter the
costs and benefits of mycorrhizal associations
and shift the competitive balance among my-
corrhizal types and related ecosystem services.
Information about the dispersal capacities
and climatic tolerances of symbiotic fungi,
and potential shifts in mycorrhizal function-
ality, would notably inform predictions about
global change effects on agriculture, forestry,
and conservation (27, 101).

Role of the common mycelial network

CMNs represent one of the most fascinating
features of mycorrhizal associations. Multiple
studies have addressed C and nutrient redis-
tribution among plants via CMNs and revealed
the vital role of CMNs in the mycoheterotro-
phic lifestyle; yet the ecological importance of
CMNs for autotrophic plants remains heavily
debated (11, 35, 78). Novel tools such as -omics
techniques; stable isotopes of O, K, and Ca; or
nanoparticles offer real promise to trace the
fate of resources in greater detail and in nat-
ural conditions (102–104). It has only recent-
ly been recognized that CMNs can transfer
allelochemicals and transmit plant signals.
Theoretically, hyphal networks could also rep-
resent pathways for virus transmission, given
that several phytoviruses can infect fungi (105).
If this were true, it would represent a new
stabilizing mechanism promoting plant spe-
cies co-occurrence and diversity, when abun-
dant and fast-growing plant species, which
usually invest little to defense systems, are
affected most.

Conclusions

We posit that plant-fungal mycorrhizal associ-
ations per se and interlinking hyphal networks
synergistically affect plant communities and
ecosystem services through the altered func-
tional traits and autecology of host plants.
This is perhaps most clearly apparent in the
specialized C nutrition of orchids and myco-
heterotrophs. ErM plants but also some NM
plants have evolved specific means ofmineral

nutrition in extremely nutrient-poor or other-
wise extreme environmental conditions. Both
high hyphal biomass and physical ensheath-
ing of plant feeder roots may underlie the
relatively strong protective benefits of EcM
fungi to their host plants, which results in
positive plant-soil feedback and high popu-
lation densities and may, in the long term,
lead to the development of low-diversity, po-
tentiallymonodominant, ecosystems. Theways
in which mycorrhizal plants and fungi modify
the environment produce spatially distinct
regeneration niches that favor establishment
of plant species with different functional traits.
We recognize three ways in which different

types of mycorrhiza influence plant population
and community ecology: by affecting plant dis-
persal, establishment, and coexistence (the
latter through stabilizing and equalizingmech-
anisms). Dispersal limitation of one or both
symbiotic partners restricts the distribution
of OM and EcM plants more than AM, ErM,
and NM plants. Failure of either partner to
arrive or establish in a given habitat may alter
the diversity, as well as the taxonomic and
mycorrhizal type composition, of plant com-
munities. Stabilizing mechanisms via nega-
tive soil feedback are best understood in the
context of AM systems. Niche differentiation
both within and among mycorrhizal types en-
hances coexistence by leveraging interspecific
competition via different rooting depths, forag-
ing strategies, and soil nutrient partitioning.
Equalizingmechanisms, which enhance weaker
competitors, may operate through differen-
tial mycorrhizal benefits that elicit relatively
stronger positive growth responses or enhance-
ment of seedling establishment via CMNs. Al-
though CMNs are important in AM, OM, and
EcM associations, evidence that they enhance
coexistence anddiversity is so far limited toAM
and OM systems. Species-specific benefits and
resource trading may represent key mecha-
nisms by which diversity begets diversity in
plant-mycorrhizal fungi mutualistic systems.
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