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ABSTRACT

Understanding microbial network assembly is a promising way to predict potential impacts of environmental changes on
ecosystem functions. Yet, soil microbial network assembly in mountain ecosystems and its underlying mechanisms remain
elusive. Here, we characterized soil microbial co-occurrence networks across 12 altitudinal sites in Mountain Gongga.
Despite differences in habitats, soil bacterial networks separated into two different clusters by altitude, namely the lower
and higher altitudes, while fungi did not show such a pattern. Bacterial networks encompassed more complex and closer
relationships at the lower altitudes, while fungi had closer relationships at the higher altitudes, which could be attributed
to niche differentiation caused by high variations in soil environments and plant communities. Both abiotic and biotic
factors (e.g. soil pH and bacterial community composition) shaped bacterial networks. However, biotic factors played more
important roles than the measured abiotic factors for fungal network assembly. Further analyses suggest that multiple
mechanisms including niche overlap/differentiation, cross-feeding and competition between microorganisms could play
important roles in shaping soil microbial networks. This study reveals microbial co-occurrence networks in response to
different ecological factors, which provides important insights into our comprehensive understanding of microbial network
assembly and their functional potentials in mountain ecosystems.

Keywords: co-occurrence network; soil microbial community; network assembly mechanism; altitudinal gradient;
Mountain Gongga

INTRODUCTION

Soil microbiota are abundant and diverse on Earth, and play
crucial roles in a wide range of biogeochemical cycles (Fierer
2017; Lladó, López-Mondéjar and Baldrian 2017). Considerable
research efforts have been devoted to characterizing microbial

species diversity and its responses to known environmental
variables, leading to the findings that soil microbiota vary con-
siderably along various ecological gradients (Fierer and Jackson
2006; Tedersoo et al. 2014; Barberán et al. 2015; Zhou et al. 2016).
Those studies will in the near future provide opportunities for
us to enhance biogeochemical processes via direct manipulation
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of soil environments and microbiome. Successful management
of the soil microbiome would require a comprehensive under-
standing of interplays between ecological factors, including abi-
otic and biotic factors, and microbial interactions among various
community members. However, due to the complexity of the soil
microbiome, microbial interactions among their members in a
community represent one of the largest knowledge gaps, lim-
iting our understanding of their roles in ecosystem functions
(Widder et al. 2016).

When living together, microorganisms interact to form a
complex ecological network (Faust and Raes 2012). Despite sig-
nificant roles in ecosystem functions, direct detection and inves-
tigation of these interactions are far from straightforward (Faust
and Raes 2012; Layeghifard, Hwang and Guttman 2017). Co-
occurrence network analysis has recently been used to explore
microbial interactions in diverse environments, such as human
gut, ocean, bioreactor and soil (Barberán et al. 2011; Faust et al.
2012; Chow et al. 2013; Ma et al. 2016; Wu et al. 2016; Ma et al. 2018).
Also, this approach reveals how microorganisms live in a com-
munity and occur together in niches, offering new insights into
our understanding of microbial assembly and functions (Deng
et al. 2012; Lupatini et al. 2014). In addition, it can provide infor-
mation on keystone taxa that have the largest influence in a
community (Berry and Widder 2014; Widder et al. 2014; Banerjee
et al. 2016b; Schlaeppi and van der Heijden 2018). Therefore, co-
occurrence network analysis is a powerful tool to explore micro-
bial interactions, understand microbial assembly and provide
keystone taxa of a community.

A limited number of studies have shown that most soil
microbial co-occurrence networks are non-randomly assembled
and form certain patterns (Barberán et al. 2011; Ma et al. 2016).
Moreover, these patterns vary depending on sampling regions
and habitats. For example, microbes in forest soils from north-
ern China had closer relationships but had a lower interac-
tion influence than those from the southern regions (Ma et al.
2016), while microbes in soybean fields from southern China had
more interactions compared with those of the northern regions
(Zhang et al. 2018). Even in soil compartments associated with
plant roots, microbial co-occurrence relationships reveal con-
trasting patterns, with more (Shi et al. 2016; Yan et al. 2016) or
less (Mendes et al. 2014; Fan et al. 2018; Zhang et al. 2018) com-
plex interactions in the rhizosphere soil than in the bulk soil.
Such differences raise the fundamental question about what
the patterns and driving forces controlling diverse network pat-
terns are across different habitats and at large spatial–temporal
scales. Some pilot studies have shown that abiotic factors such
as soil pH, organic matter, precipitation level, iron and mag-
nesium content may be the key factors shaping microbial net-
works in forests, grasslands and agricultural fields (Ma et al. 2016;
Wang et al. 2018; Zhang et al. 2018), and microbial phylogeny was
also found to structure co-occurrence relationships in anaero-
bic digesters (Nuismer and Harmon 2015; Wu et al. 2016). How-
ever, microbial network assembly mechanisms remain largely
unknown.

The mountain ecosystem represents one of the most impor-
tant components in terrestrial systems, and provides signifi-
cant ecological services. Mountain ecosystems harbor a diverse
array of habitats along the altitudinal gradient in which a large
range of climate, vegetation and soil properties can be found
(Sundqvist, Sanders and Wardle 2013). Though altitudinal pat-
terns of species diversity are well-studied (Shen et al. 2013; Shen
et al. 2015; Li et al. 2018; Adamczyk et al. 2019), microbial net-
work patterns and driving forces have not yet been resolved.
Given that microbial interactions may contribute to soil

functions more than species diversity (Ma et al. 2016), com-
paring the succession of microbial networks across a diverse
range of habitats along the altitudinal gradient may point toward
a more comprehensive understanding of microbial assembly
in the soil environment. Also, condidering potential microbial
interactions and possible mechanisms may help to improve
the performance of prediction models for ecosystem function
dynamics.

Understanding microbial community assembly mechanisms
is a central topic in microbial ecology (Stegen et al. 2012; Zhou
et al. 2014). However, the mechanisms of soil microbial com-
munity assembly remain elusive at the higher-order interac-
tion level in mountain ecosystems. In the complex ecolog-
ical interaction web, the spectrum of interactions primarily
includes cross-feeding interactions, by which one organism ben-
efits from the biochemical activity of another one (Sieber, McIn-
erney and Gunsalus 2012; Seth and Taga 2014; Pande and Kost
2017), and competitive interactions, by which community mem-
bers compete for limiting resources or release toxic products
(Cordero et al. 2012; Pande et al. 2014). Also, co-occurring rela-
tionships could result from co-colonization and niche overlap
(Faust and Raes 2012; Dohi and Mougi 2018). Microorganisms
with similar environmental preferences tend to co-occur in a
meta-community (Wiens et al. 2010; Wu et al. 2016; Morales-
Castilla et al. 2017), while in a similar way those that have
contrasting niche preferences tend to form negative relation-
ships (Faust and Raes 2012). Whether these mechanisms jointly
govern the microbial network assembly needs to be further
investigated.

Mountain Gongga is the highest mountain of the eastern
boundary of Tibetan Plateau (Wu et al. 2013) and serves as a
hotspot for studying interactions among climate, vegetation,
soil and microbial communities (Shen et al. 2001; Shen, Liu and
Wu 2004; Sun et al. 2013; Li et al. 2018; Cui et al. 2019; Wang
et al. 2019). Here, we chose this experimental site to reveal
the shift of soil microbial network assembly in response to
diverse ecological factors, and to explore the possible mecha-
nisms shaping such processes. Given the altitudinal variabil-
ity in soil microbial communities (Shen et al. 2015; Wang et al.
2015; Wang et al. 2017; Li et al. 2018) and fundamental differ-
ences in life strategies between bacteria and fungi (Boer et al.
2005; Schneider et al. 2012; Baldrian 2017), we hypothesized:
(i) that the soil microbial network would shift dramatically in
response to different habitats along the altitudinal gradients,
but bacteria and fungi would show different patterns; (ii) that
ecological factors driving such variations in bacterial and fun-
gal networks would be different due to their different niche
preferences; and (iii) that multiple mechanisms including niche
overlap/differentiation, cross-feeding and competition between
microorganisms could shape soil microbial co-occurrence net-
works. This study provides a comprehensive understanding of
microbial network assembly and may have important implica-
tions for their potential impacts on soil functions in mountain
ecosystems.

MATERIALS AND METHODS

Site description and soil sampling

The Mountain Gongga National Nature Reserve is located in
the west part of Sichuan Province, Southwest China (ca. 29◦01’-
30◦05’ N, 101◦ 29’-102◦12’ E). With a peak height of 7556 m, Moun-
tain Gongga is the summit of the Hengduan Mountain Ranges,
which constitutes the eastern boundary of the Tibetan Plateau.
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The environment in Mountain Gongga is characterized by a
diverse range of habitats with an extraordinarily variable topog-
raphy, climate, vegetation and soil, virtually along the promi-
nent altitudinal gradients (Table S1, see online supplementary
material). In July, for example, the mean monthly temperature
decreases from 12.7◦C at 1600 m to 4.2◦C at 3000 m, whereas pre-
cipitation increases from 1050 to 1943 mm, respectively (Wu et al.
2013). The vegetation types represent the most complete vegeta-
tion spectrum along the altitudinal gradients of the subtropical
region in China. From lower to higher altitudes (1800–4100 m),
the vegetation type exhibits a shift from evergreen broadleaved
forests, to deciduous broadleaved forests, to mixed broad-leaved
conifer forests, to dark coniferous forests, to subalpine shrubs,
and to subalpine shrub meadows.

We collected topsoil samples (n = 71, 0–10 cm depth after
removing litter layer) from 12 successive altitudinal sites (from
1800 to 4100 m) in the mountain ecosystem in October, 2014 (Fig.
S1, see online supplementary material). To eliminate the effect
of high spatial heterogeneity on microbial analyses, we collected
soils from four to seven independent plots at each altitude with
four to five cores per plot pooled as one replicate sample. Vis-
ible roots and litter were removed prior to homogenizing the
soil samples. Each fresh soil sample, passed through a 2-mm
sieve, was divided into two subsamples. One was stored at 4◦C
for soil abiotic properties measurement and the other was stored
at −20◦C for DNA extraction. Soil temperature was measured in
the field at a depth of 10 cm (T10) using a digital thermometer.
In the lab, soil properties including soil pH, total nitrogen (TN),
total carbon (TC), NH4

+-N, NO3
−-N and electrical conductivity

were measured (Table S2, see online supplementary material),
and the mean measured soil properties at each sampling site
were calculated. More detailed information is included in the
online supplementary material.

Bacterial and fungal analyses

Soil genomic DNA was extracted using a PowerSoil R© DNA Isola-
tion Kit (MOBIO, CA, USA). DNA purity and concentration were
analysed with a NanoDrop spectrophotometer (NanoDrop, DE,
USA). For sequencing, the V4–V5 region of bacterial 16S rRNA
gene primer pairs 515F (5′-GTGYCAGCMGCCGCGGTA- 3′)/909R
(5′-CCCCGYCAATTCMTTTRAGT -3′) and fungal Internal Tran-
scribed Spacer 2 (ITS2) primer pairs ITS4 (5′-TCCTCCGCTTATT
GATATGC-3′)/ITS3-kyo2 (5′- GATGAAGAACGYAGYRAA-3′) were
used (Toju et al. 2012; Rui et al. 2015). A 12-bp multiplex identi-
fier sequence was added to the 5′ end of primers 515F and ITS4.
PCR reactions were conducted based on the method described
by Li et al. (Li et al. 2018). Briefly, an aliquot (10 ng) of high-purity
DNA was used as a template for amplification. The PCR ampli-
fications consisted of initial denaturation at 94◦C for 3 min, fol-
lowed by 30 cycles of denaturation at 94◦C for 30 s, annealing
at 55◦C (for both bacteria and fungi) for 1 min and extension at
72◦C for 1 min, with a final extension at 72◦C for 5 min. Triplicate
PCR reactions were performed per sample and pooled for purifi-
cation using a DNA Gel Extraction kit (Axygen, CA, USA). Neg-
ative controls were performed to check for contamination. An
equimolar amount of PCR product from each sample was pooled
together, and subjected to Illumina MiSeq sequencing (2 × 250
V2 kit) at the Chengdu Institute of Biology, Chinese Academy of
Sciences..

Paired-end sequences were merged using the FLASH tool
(Magoč and Salzberg 2011). The sequence data processing,
including sequence quality control, Operational Taxonomic

Unit (OTU)-based analyses, taxonomy assignment and diver-
sity indices calculation, was performed using the UPARSE
pipeline (Edgar 2013). Briefly, sequences with barcode ambigui-
ties, <250 bp in length and with average quality scores <20 were
discarded. Bacterial taxonomy was assigned to each unique
sequence using the Ribosomal Database Project (RDP) Classifier
with a confidence threshold of 80% (Wang et al. 2007). The tax-
onomy of fungal OTUs was assigned using the BLAST method
against the UNITE database for QIIME release 7.2 (https://unit
e.ut.ee/repository.php). Before network construction, the OTU
matrices were rarefied to 9500 and 8900 sequences per sam-
ple and followed by normalization using total sum scaling (also
known as relative abundance) for bacteria and fungi, respec-
tively. To reduce spurious OTUs, we removed OTUs with rel-
ative abundances <0.01% of the total number of bacterial or
fungal sequences. Because the fungal ITS sequence may not
be a suitable marker for phylogenetic analysis (Nilsson et al.
2008; Pérez-Izquierdo et al. 2017), only a bacterial phyloge-
netic tree was constructed from the representative sequences
using MUSCLE (Edgar 2004). Bactetial phylogenetic diversity
(Faith’s PD) (Faith 1992), net relatedness index (NRI) and nearest
taxon index (NTI) (Webb et al. 2002) were calculated using pd,
ses.mpd and ses.mntd functions in the picante package (Kembel
et al. 2010).

Network construction

The meta-network including bacterial and fungal OTUs was
inferred based on the Spearman correlation matrix. The false
discovery rate (FDR) procedure provided in multtest R package
was applied to adjust all P values for multiple testing (Ben-
jamini, Krieger and Yekutieli 2006). The cutoff of FDR-adjusted
P values was 0.001. The threshold of correlation value was auto-
matically identified through random matrix theory (RMT)-based
algorithms (Luo et al. 2006), which have proved to be reliable,
sensitive and robust for identifying molecular ecological net-
works for analysing high-throughput metagenomic data sets
(Deng et al. 2012; Ma et al. 2018; Tian et al. 2018; Wang et al. 2018).
The connections in the network represent positive or negative
correlation values greater than the RMT-threshold value. Gephi
(https://github.com/gephi/gephi) was used to generate the net-
work image.

In order to depict the differences in topological features
associated with bacteria and fungi, we further generated three
sub-networks wherein bacteria–bacteria (BB), bacteria–fungi (BF)
and fungi–fungi (FF) associations were captured, respectively.
Finally, we generated sub-networks for each soil sample from
sub-networks BB, BF and FF by preserving the OTUs presented
in each sample using the subgraph functions in the igraph pack-
age. Network-level topological features provided in the igraph
package were calculated (Csardi and Nepusz 2006). These prop-
erties included node-level features, such as betweenness cen-
trality, closeness centrality, clustering coefficient and degree,
and network-level features, such as node number, edge num-
ber, average degree, average path length, clustering coefficient,
cluster number, modularity, diameter, degree assortativity and
density. Detailed definitions of these network topological fea-
tures are described in Table S3, see online supplementary mate-
rial. Nodes that distributed in more than two-thirds of the sam-
ples with high degree (>100) and low betweenness centrality val-
ues (< 5000) were recognized as potential keystone OTUs in the
meta-network (Ma et al. 2016).
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Statistical analysis

We grouped each sub-network (BB, BF and FF) by altitude and
used principal component analysis (PCA) to detect possible clus-
ters formed among all the samples. Permutation multivari-
ate analysis of variance (PERMANOVA) was further applied to
examine their differences in the topology structure. We used
the Wilcoxon rank-sum test to determine the difference in the
network-level topological features between the lower and higher
altitudes. We used multiple regressions on distance matrices
(MRM) in the ecodist package to estimate the importance of
ecological factors including the environmental and community
variables for the network-level topology variations. Respective
bacterial or fungal community variables were α-diversity (rep-
resented by Shannon’s index), phylogenetic diversity (measured
by Faith’s index, bacteria only), and the first (PCoA1) and sec-
ond (PCoA2) axis value of principal coordinate analysis on the
microbial OTU matrix calculated by the pcoa function of the
ape package. The available environmental variables included
space, climate and edaphic properties, such as the longitude,
latitude, mean annual precipitation (MAP), mean annual tem-
perature (MAT), soil pH, TC, TN, NH4

+-N, NO3
−-N, electrical con-

ductivity, C:N ratio and T10. The Euclidean distance matrices for
network-level topological features and ecological factors stan-
dardized with decostand function (standardize method) of the
vegan package were used in MRM models. We used Spearman’s
rank correlation test to check the relationships between network
topological features and the ecological factors.

Data accessibility

The original sequencing data are available at the European
Nucleotide Archive under accession No. PRJEB26872 (http://ww
w.ebi.ac.uk/ena/data/view/ PRJEB26872).

RESULTS

Meta-community co-occurrence network and
sub-networks

The majority of bacterial sequences belonged to the phyla Pro-
teobacteria (relative abundance 34.5%), Acidobacteria (30.7%),
Bacteroidetes (9.5%), Chloroflexi (5.8%) and Planctomycetes
(5.1%). The most abundant fungal phyla were Ascomycota (rela-
tive abundance 70.0%), Basidiomycota (24.9%) and Glomeromy-
cota (1.6%). The constructed meta-network captured 17 406
edges, including positive and negative relationships among 1094
bacterial nodes (OTUs) and 1260 fungal nodes (Fig. S2, see online
supplementary material). This meta-network roughly followed a
scale-free degree distribution (Fig. S3, see online supplementary
material), meaning that most nodes had only a few connections
and only a few nodes had numerous connections, indicating a
non-random co-occurrence pattern.

Because the meta-network included both bacteria and fungi,
it was denoted as the sub-network of ‘all edges’ (All). We
then partitioned nodes of sub-network All into two taxonomic
groups (bacteria and fungi). Hence, three sub-networks were
obtained including BB, BF and FF associations. In the sub-
network BB, nodes with high degree values were mainly affili-
ated with members of Acidobacteria Gp1, Gp2, Gp3, Gp4, Gp5,
Gp6 and Gp17, and Planctomycetales, Sphingobacteriales, Xan-
thomodales, Rhizosbiales, Burkholderiales and Rhodospirillales
(Tables S4 and S5, see online supplementary material), includ-
ing genera Ohtaekwangia, Steroidobacter, Terrimonas, and Pirellula

(Tables S6 and S7, see online supplementary material). In the
sub-network FF, the associations were mainly observed among
Helotiales, Agaricales, Pleosporales, Sordariales, Chaetothyri-
ales and Hypocreales (Table S8, see online supplementary mate-
rial), including genera Exophiala, Mycoarthris, Inocybe, Cenococcum,
Veronaea, Glutinoglossum and Byssocorticium (Table S9, see online
supplementary material). In the sub-network BF, bacterial and
fungal OTUs were mainly the same as those in sub-networks BB
and FF.

The correlation analysis showed that bacterial genera with
high degree values were exclusively correlated with the mea-
sured soil characteristics, such as soil pH, NO3

− and T10 (Fig. 1A).
In particular, soil pH had negative correlations with Rhizomicro-
bium and members of Acidobacterial genera Gp1, Gp2 and Gp3,
but had positive relationships with members of Acidobacteria
Gp4, Gp5, Gp6 and Gp17. Other genera including Ohtaekwangia,
Steroidobacter and Dongia showed close relationships with soil
electrical conductivity, TC and TN. However, few fungal genera
with high degree values were correlated significantly (P < 0.05)
with the measured variables. These environmental variables
except for MAP and altitude showed positive relationships with
genera Exophiala, Mycoarthris, Veronaea, Glomus and Geoglossum
but had negative relationships with genera Fontanospora and Pur-
pureocillium (Fig. 1B). These results suggest that bacteria and
fungi in the networks could be constrained by different environ-
mental factors.

Microbial network structure in diverse habitats

In sub-networks All, BB and BF, the network structure of altitudi-
nal sites at the lower altitudes (1800–2600 m) was significantly (P
< 0.05) different from that at most higher altitudes (2800–4100 m)
(Tables S10, S11 and S12, see online supplementary material),
while there were no obvious network structure patterns in sub-
network FF (Table S13, see online supplementary material). Fur-
ther, PCA and PERMANOVA analyses showed that all the sam-
ples in sub-networks All, BB and BF were separated into two sig-
nificantly (P = 0.001) different clusters by altitude, namely the
lower (1800–2600 m) and higher (2800–4100 m) groups (Fig. 2A,
B and C). However, the network structure of sub-network FF did
not show such a pattern (Fig. 2D). Also, the network structure of
sub-network FF showed significant (P = 0.001) difference only
between pairs of dark coniferous forest–subalpine shrub and
dark coniferous forest–subalpine shrub meadow without differ-
ences among other vegetation types (data not shown). These
results suggest that topological features of bacterial and fungal
networks could have different responses to different habitats.

MRM was used to estimate the importance of ecological fac-
tors for the variations of network structure. Collectively, 59.5,
40.2 and 38.9% of the total variations in sub-networks BB, BF
and FF were explained, respectively (Fig. 3A). Community vari-
ables alone explained 20.4, 16.4 and 29.7% of the total variations,
and the communities together with the available environmen-
tal variables explained 36.6, 22.5 and 3.6% of the total variations,
respectively. This suggests that both measured abiotic and biotic
factors shape bacterial networks, while abiotic factors were not
as important as biotic factors for fungal network assembly. Fur-
ther investigation showed that soil pH, PCoA2 and PCoA1 were
the three most important variables correlated with the network
structure of sub-network BB (Fig. 3B). In the sub-network BF,
bacterial PCoA1 and fungal PCoA1 were the two most impor-
tant variables. In the sub-network FF, however, Shannon’s index
together with PCoA2 and PCoA1 predominated over other vari-
ables in explaining the structure variation.
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Figure 1. Correlations between the measured environmental variables and the relative abundances of microbial genera with high degree value in sub-networks BB
(A) and FF (B). MAT, mean annual temperature (◦C); MAP, mean annual precipitation (mm); conductivity, soil electric conductivity (μS cm−1); T10, soil temperature at
10 cm depth (◦C); TC, total carbon (%); TN, total nitrogen (%); NH4

+-N, ammonium nitrogen [mg (kg dry wt soil)−1]; NO3
−-N, nitrate nitrogen [mg (kg dry wt soil)−1].

Spearman’s rank correlation tests were performed. Only significant correlations at P < 0.05 are colored.

Figure 2. Principal component analysis of the network structure of sub-networks All (A), BB (B), BF (C) and FF (D). The lower (1800–2600 m) and higher (2800–4100 m)
altitudes are circled, respectively. Sub-networks BB, BF and FF included associations only between bacteria–bacteria, bacteria–fungi, and fungi–fungi, respectively.

Sub-network All included all the above three types of associations.
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Figure 3. The relative contributions (%) of environmental and community composition variables (A), and specific variables (B) to the variations in network structure of
sub-networks BB, BF and FF.

Microbial topological features along the altitudinal sites

In the sub-network BB, altitudinal succession showed that the
topological features including average degree, node number and
edge number were higher at the lower altitudes than those at
the higher altitudes (Fig. 4A and Fig. S4, see online supplemen-
tary material), whereas the average path length had a contrast-
ing trend. In the sub-network FF, however, the most notice-
able observation was significantly higher average path lengths
at most lower altitudes (1800–2600 m) than those observed at
the higher altitudes (2800–4100 m) (Fig. 4B and Fig. S5, see
online supplementary material). Most topological features in
sub-networks All and BF showed similar trends to those found
in sub-network BB (Figs S6 and S7, see online supplementary
material). In a network, average degree and average path length
describe the complexity level of a network and the distance
between any two members in a network, respectively (Table S3).
Indeed, the higher the average degree, the more complex the
network obtained, and the lower the average path length, the
closer the observed relationships among the members. Thus,
the above results suggest that bacterial networks have more
complex and closer relationships at the lower altitudes, whereas
fungal networks have closer relationships at the higher alti-
tudes.

Spearman correlation analysis indicated that topological
features of sub-network BB were extensively correlated with
community composition and environmental variables. For

example, average degree, edge number and node number were
positively related to variables such as soil pH, TC, TN, T10, MAT
and soil electrical conductivity (Fig. 5A), while they were nega-
tively correlated with PCoA1, altitude and MAP. However, aver-
age path length generally showed the opposite trend compared
with average degree. In the sub-network FF, Shannon’s index (α-
diversity) was the only variable showing significant (P < 0.05)
relationships with nearly all topological features (Fig. 5B). The α-
diversity showed a positive correlation with node number, edge
number, average path length, modularity, cluster number and
degree assortativity, but was negatively correlated with cluster-
ing coefficient and density.

Potential keystone OTUs in the meta-network

The degree and betweenness centrality for each microbial node
were used to infer potential keystone OTUs in the meta-network.
Specifically, nodes that were distributed in more than two-thirds
of the samples with degree >100 and betweenness centrality
<5000 were identified as candidate keystone OTUs (Fig. 6A).
Eighty-seven potential keystone OTUs were found from bacte-
rial phyla in our study, which comprised 25.7% of bacterial reads
(Fig. 6B, Table S14, see online supplementary material). A large
fraction of these OTUs belonged to the phylum Acidobacteria
(33 OTUs, ranging from 0.03 to 0.76% in relative abundance),
mainly comprising members of Gp6 (8 OTUs), Gp1 (5 OTUs), Gp2
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Figure 4. The main topological features of sub-network BB (A) and FF (B). The asterisks in parentheses mean the values are significantly different between the lower
(1800–2600 m) and higher (2800–4100 m) altitudes by Wilcoxon rank-sum test. ∗ Significance at P < 0.05; ∗∗∗ P < 0.001.

Figure 5. Ccorrelations between ecological factors and the network-level topological features of sub-networks BB (A) and FF (B). Only significant correlations at P <

0.05 are colored.

Figure 6. Potential keystone OTUs inferred by the betweenness centrality and degree values (A) and the altitudinal distributions of these keystone species at the genus
level (B). Gp1, Gp2, Gp3, Gp4, Gp5, Gp6, Gp7 and Gp17 were unknwon members of Acidobacteria subdivisions. The colors in (B) are ranked by the logarithm of their
relative abundances added to 1.
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(5 OTUs) and Gp3 (5 OTUs). Keystone OTUs in the phylum Pro-
teobacteria (28 OTUs, ranging from 0.02 to 2.55% in relative abun-
dance) mainly comprised Rhizobiales (6 OTUs, and one genus
was Bradyrhizobium with high relative abundance of 2.55%) and
Xanthomonadales (5 OTUs, represented by genus Steroidobacter
with relative abundance of 0.84%). The phylum Bacteroidetes
had 9 candidate keystone OTUs, mainly encompassing genera
Ohtaekwangia (3 OTUs, relative abundances of 0.75%) and Terri-
monas (3 OTUs, relative abundance of 1.24%). The phylum Nitro-
spirae contained only 1 candidate keystone OTU (genus Nitro-
spira, 1.14% in relative abundance). Other potential keystone
OTUs were associated with phyla Chloroflexi (4 OTUs), Plancto-
mycetes (3 OTUs), Actinobacteria (3 OTUs) and Verrucomicrobia
(1 OTU).

DISCUSSION

Understanding microbial network assembly is a promising way
to predict the potential impact of environmental changes on
ecosystem functions. However, soil microbial network assem-
bly in mountain ecosystems and its underlying mechanisms
remain elusive. In this study, we characterized soil microbial
co-occurrence networks across 12 altitudinal sites in Mountain
Gongga, the highest mountain on the eastern boundary of the
Tibetan Plateau. The results showed that bacteria and fungi had
distinct network patterns in response to differences in habitats
along the altitudinal gradient. Furthermore, driving factors also
differed, and multiple mechanisms could play important roles
in shaping soil microbial network assembly in this ecosystem.
Overall, this study suggests distinct mechanisms for microbial
network assembly in mountain ecosystems.

The shift of microbial networks in response to different
habitats

The altitudinal pattern of microbial network structure and topo-
logical features demonstrated our first hypothesis that networks
for both bacteria and fungi would shift in different manners
in response to different habitats. Interestingly, despite differ-
ences in habitats along the 12 altitudinal sites, bacterial net-
works formed two different clusters by altitude, with more com-
plex and closer bacterial relationships at the lower altitudes.
Recent studies found more complex and closer microbial rela-
tionships in forest soils from northern China compared to south-
ern China (Ma et al. 2016), while microbial networks in soybean
fields from southern China had more interactions compared
with those of the northern regions (Zhang et al. 2018). Other
studies also revealed contrasting patterns with more (Shi et al.
2016; Yan et al. 2016) or less (Mendes et al. 2014; Fan et al. 2018;
Zhang et al. 2018) complex interactions in the rhizosphere soil
than in the bulk soil. Our results combined with those of previ-
ous studies suggest that niche differentiation caused by the alti-
tude and soil pH could be the main reasons. Indeed, niche dif-
ferentiation at the lower altitudes was weaker as environmen-
tal conditions were less variable than those at the higher alti-
tudes (Li et al. 2018), thus the weaker the niche differentiation,
the stronger the microbial interactions would be (Faust and Raes
2012; Ma et al. 2016). Another factor resulting in bacterial net-
work difference between the lower and higher altitudes could
be soil pH variation. In our study sites, more acidic soil pH at
the higher altitudes corresponded to a lower species diversity (Li
et al. 2018), and low species diversity reduced network complex-
ity, as the Shannon’s index showed a positive relationship with

average degree (Fig. 5A). Consequently, bacterial relationships at
the lower altitudes appeared to be more complex.

Though fungal networks did not differ between the lower
and higher altitudes, they had closer relationships at the higher
altitudes than at the lower altitudes. Fungal communities are
tightly associated with plant communities, such as plant com-
munity diversity and composition (Philippot et al. 2013; Yang
et al. 2017; Purahong et al. 2018; Adamczyk et al. 2019). However,
among the six different vegetation types in this study, fungal
networks only differed between pairs of dark coniferous forest–
subalpine shrub and dark coniferous forest–subalpine shrub
meadow without differences among other vegetation types. On
the other hand, a recent study at the same site showed that
plant diversity decreased with increasing altitude (Li et al. 2018).
Generally, fungal diversity is known to be positively correlated
with plant diversity (Hiiesalu, Bahram and Tedersoo 2017; Yang
et al. 2017). Therefore, low plant diversity should result in a more
homogeneous habitat for fungi and support low fungal diversity.
The weaker the niche differentiation, the stronger the micro-
bial interactions would be (Faust and Raes 2012; Ma et al. 2016).
Indeed, we found that fungal α-diversity was negatively corre-
lated with network clustering coefficient and density, thus fun-
gal networks at the hihger altitudes could encompass closer
relationships compared to those at the lower altitudes (Faust
and Raes 2012).

Ecological factors driving the network variation

The results obtained supported our second hypothesis that dif-
ferent ecological factors would drive the variations in bacterial
and fungal networks, suggesting that both abiotic and biotic fac-
tors (e.g. soil pH and bacterial community composition) shaped
bacterial networks, while biotic factors played more important
roles than abiotic factors for fungal network assembly. A previ-
ous study showed that organic matter and iron predominantly
shaped microbial networks in forest soils at a continental scale
(Ma et al. 2016), and mean annual precipitation was the most
important factor constraining network structure in semi-arid
grassland soils in northern China (Wang et al. 2018). However,
our results were in line with the widely accepted view that soil
pH predominated over other environmental factors in influenc-
ing bacterial species diversity (Rousk et al. 2010; Cho et al. 2018;
Li et al. 2018). Moreover, a recent study indicated that soil pH
was the best predictor for bacterial networks (Zhang et al. 2018),
which is consistent with our results. We attribute the effect of
soil pH on bacterial networks to two factors. First, the shift in soil
pH would alter microbial community composition (Rousk et al.
2010; Cho et al. 2018; Li et al. 2018), and as the community compo-
sition largely contributes to network construction, this undoubt-
edly influences the topological features of bacterial networks.
Second, soil pH could alter a series of intracellular biochem-
ical pathways, affecting microbial enzymatic activities (Stark,
Mannisto and Eskelinen 2014) and changing carbon and nutri-
ent pools in soil environments (Pande and Kost 2017). Therefore,
bacterial interactions would be largely shaped by their depen-
dence on these substrates. Nonetheless, we could not exclude
the roles of other soil characteristics (e.g. soil temperature, TN
and TC) on bacterial network assembly, as they provide microor-
ganisms with physical and nutritional conditions.

As for fungal network assembly, fungal Shannon’s index
together with community composition rather than abiotic fac-
tors were revealed as the main driving factors. Like bacteria, fun-
gal α-diversity and community composition should contribute
significantly to network assembly since the presence or absence
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of community members would not only affect trophic inter-
actions among them but also influence network construction.
Though fungal networks only differed between two vegetation
types, the effect of fungal community composition and diversity
on network assembly could be modified by fungi–plant inter-
actions, since mycorrhizal, plant pathogenic and deadwood-
inhabiting fungi were typically associated with different plant
species or plant-related factors (Philippot et al. 2013; Chen et al.
2017; Neuenkamp et al. 2018; Purahong et al. 2018; Weißbecker
et al. 2018). However, as we only measured a limited number
of biotic and abiotic factors, other unmeasured ones may also
impact fungal network assembly, necessitating further studies
in the future.

Mechanisms of soil microbial network assembly

The results also support our third hypothesis that multiple
mechanisms would shape soil microbial network assembly. In a
co-occurrence network, positive relationships could result from
co-colonization, niche overlap and/or cross-feeding, while neg-
ative associations could arise from prey–predator relationships,
amensalism, differential niche adaptation and/or competition
(Faust and Raes 2012; Dohi and Mougi 2018). Our results suggest
that soil microbial co-occurrence networks could be primarily
due to niche overlap and differentiation. Microorganisms with
similar adaptation to a particular environmental factor tend to
co-occur (positive relationship) in a meta-community since they
share similar environmental preferences (Wiens et al. 2010; Wu
et al. 2016; Morales-Castilla et al. 2017). In this study, bacteria and
fungi with positive associations were correlated with soil pH as
well as other environmental variables such as NO3

−, T10 and soil
electrical conductivity (Fig. 1). The niches created by these envi-
ronmental variables would select microorganisms that share
similarity in niche adaptation, thus co-occurring in a network,
while those that have contrasting niche preferences tend to form
negative relationships in a network. For instance, members of
Acidobacteria Gp1, Gp2 and Gp3 (group 1) were negatively corre-
lated with soil pH, whereas members of Gp4, Gp5, Gp6 and Gp17
(group 2) had positive relationships with soil pH. Such opposite
niche adaptations have caused negative relationships between
these two Acidobacterial groups.

Nonetheless, cross-feeding and competition might shape
microbial associations as well. In cross-feeding relationships,
one organism benefits from the biochemical activities of another
one, or they both benefit from their obligate interactions (Pande
et al. 2014; Pande et al. 2016). However, direct microbial interac-
tions may not occur in a strict species-to-species manner but
depend on trophic interactions among various members in a
network. For example, metabolites produced by several Rhizo-
biales were strictly required for Steroidobacter agariperforans sp.
nov. to grow on polysaccharides (Sakai et al. 2014), which agrees
well with our network analysis that genus Steroidobacter co-
occurred with several genera affiliated with Rhizobiales. For this
reason, integrating species composition and genomic informa-
tion in a community may have greater potential to reveal direct
microbial interactions (Ma et al. 2018). In addition, our phyloge-
netic analyses with NTI and NRI suggest that bacterial commu-
nities are much more phylogenetically clustered at the higher
altitudes (Fig. S8), which would increase competition for simi-
lar resources between closely related bacterial species (Goberna
et al. 2014a,b; Pérez-Valera et al. 2017). This is in agreement with
the increased negative edge proportion at the higher altitudes
(Fig. S9), where the environment is harsh and competitive and
such negative relationships could be enhanced.

Potential keystone OTUs involved in soil carbon and
nitrogen cycling

Keystone species exert large effects on other community mem-
bers and play vital roles in maintaining ecosystem functions
(Berry and Widder 2014; Williams, Howe and Hofmockel 2014;
Ma et al. 2016; Banerjee, Schlaeppi and van der Heijden 2018).
In this study, the major candidate keystone OTUs were from
abundant bacterial phyla, such as genera Bradyrhizobium, Nitro-
spira, Steroidobacter and members of Acidobacteria Gp6 and Gp1.
Genera Bradyrhizobium and Nitrospira are known for their abili-
ties in nitrogen fixation and nitrification, respectively (Dixon and
Kahn 2004; Jetten 2008), which play an important part in biogeo-
chemical cycling whereby inert nitrogen gas is transformed into
biological nitrogen to support the growth of other microorgan-
isms and plants. The roles of genus Steroidobacter include deni-
trification (Fahrbach et al. 2008) and polysaccharide degradation
(Sakai et al. 2014). Also, Acidobacteria were shown to decompose
organic matter in acidic soils (Naether et al. 2012; Rawat et al.
2012), and members of Gp1 possibly were adapted to an olig-
otrophic lifestyle in low-nutrient soils, whereas members of Gp6
preferred to reside in high-nutrient soils (Banerjee et al. 2016a;
Liu et al. 2016). Altogether, these potential keystone OTUs could
play significant roles in carbon and nitrogen cycling in mountain
soils.

Despite the usefulness of network analysis, there are still
some limitations to the present approach. For example, spuri-
ous correlations may occur when comparing significant correla-
tions. To tackle this problem, we first discarded low-abundance
OTUs, then the FDR method was used to correct possible errors
occurring among multiple tests. Moreover, a RMT-based algo-
rithm rather than an arbitrary threshold was applied to gen-
erate our networks (Deng et al. 2012; Ma et al. 2018; Tian et al.
2018; Wang et al. 2018). Another pitfall in the network construc-
tion is the faulty prediction of a relationship between two OTUs
because both may be affected by a third one (Faust and Raes
2012). Thus, further experimental verification of microbial inter-
actions is needed in future co-occurrence network investiga-
tions (Lima-Mendez et al. 2015; Weiss et al. 2016).

CONCLUSIONS

We found that soil microbial networks generally changed in
response to differences in habitats along the altitudinal gra-
dient in the mountain ecosystem. Soil bacterial networks dif-
fered between the lower and higher altitudes, but fungal net-
works did not show such a pattern. Bacteria had more complex
and closer relationships at the lower altitudes, while fungi had
closer relationships at the higher altitudes. Abiotic and biotic
factors, i.e. soil pH and community composition, mainly shaped
bacterial networks, but biotic factors played more important
roles than abiotic factors for fungal network assembly. Further
analysis also suggests that soil microbial co-occurrence net-
works are jointly driven by niche overlap/differentiation, cross-
feeding and competition between microorganisms. In addition,
some potential keystone OTUs could play significant roles in car-
bon and nitrogen cycling. These findings provide new insights
into our comprehensive understanding of soil microbial network
assembly in mountain ecosystems.

SUPPLEMENTARY DATA

Supplementary data are available at FEMSEC online.
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