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ABSTRACT  17 

Low intensity prescribed fire is a critical strategy for mitigating the effects of catastrophic wildfires.  The 18 

above-ground response to fire has been well-documented, including many ecosystem benefits associated 19 

with prescribed burning, but fewer studies have directly addressed the effect of prescribed fire on soil 20 

organisms. We aimed to understand how soil microbial communities respond to prescribed fire and to 21 

determine the ecological processes driving their dynamics. We extensively sampled four plots for 17 22 

months in a mixed conifer forest in northern California, USA; immediately following a low-intensity 23 

prescribed fire, a higher-intensity prescribed fire, and two no-burn control plots. We found that prescribed 24 

fire significantly altered the community structure for both fungi (ITS) and bacteria (16S), which was 25 

sustained throughout the time-series. By comparing our community profiling results with a model of neutral 26 

community assembly, we found that the presence of most taxa across all experimental conditions could be 27 

explained by neutral processes. However, combining threshold indicator taxa analysis and correlation 28 

network analysis with the neutral model identified a cohort of taxa that responded deterministically to 29 

prescribed fire. The subcommunity identified through this series of analyses includes both known and new 30 

pyrophilous taxa. Beyond this, our analyses revealed network modules within postfire communities which 31 

were responsive to fire-intensity. Taken together, these results lay the foundation for building a process-32 

driven understanding of microbial community assembly in the context of the classical disturbance regime 33 

of fire. 34 

 35 

INTRODUCTION 36 

Under the current trajectory of climate change, wildfires are expected to continue increasing in 37 

frequency and severity in western North America and other regions across the globe [1–3]. Wildfires burn 38 

hundreds of millions of hectares of vegetation annually [4] and contribute to the global carbon cycle both 39 

in terms of atmospheric input as CO2 and terrestrial sequestration of carbon in the form of pyrogenic organic 40 

matter (PyOM) [5–7]. A key strategy toward decreasing the frequency of devastating wildfires is the 41 

implementation of lower-intensity prescribed fires and managed wildfires. These lower-intensity controlled 42 
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burns have proven effective in reducing the fuel load and the likelihood of catastrophic fire [8–10]. While 43 

the effects of prescribed fire on plant and animal communities are increasingly well-documented [9–13], 44 

our understanding of the impact of fire management strategies on microbial communities is much more 45 

limited [14]. In this study, we investigated the effects of prescribed burns on soil bacteria and fungi with 46 

the aim of understanding the ecological processes that shape these communities.   47 

Several key ecological processes operate together to dictate community assembly after 48 

perturbations such as fire. One process by which communities assemble is the deterministic (or ‘niche’) 49 

process of ecological selection, which encompasses environmental filtering and biotic competition. In 50 

contrast, neutral (or random) processes of community assembly include dispersal, drift, and speciation [15]. 51 

Understanding the relative contributions of these processes to community assembly after disturbance is 52 

critical because; (1) they ultimately determine the successional trajectory and recovery time of these 53 

communities, and (2) possible interventions designed to enhance community resilience will likely need to 54 

take these processes into account if they are to be successful. When a new habitat becomes available for 55 

microbial colonization, neutral processes typically dominate early on, with selection playing a more 56 

important role over time [16, 17]. Fire can be among the most extreme types of disturbance, effectively 57 

resulting in a new habitat  that is recolonized over time via secondary succession [18]. Consistent with this 58 

notion, Ferrenberg, et al found that neutral processes played a strong role in soil bacterial communities four 59 

weeks after severe wildfire, and after sixteen weeks the community was less neutral [17].  60 

Work across multiple post-fire systems (predominantly wildfire) is starting to paint a complex 61 

picture of the impacts of fire on microbial communities. Despite complete decimation of the above-ground 62 

ecosystem, many organisms are able to survive below ground, even during the most extreme wildfires [12]. 63 

A recently proposed conceptual model provides a framework for considering the thermo-chemical gradient 64 

that defines the post-fire soil habitat [19]. This model describes the insulative capacity of soil, meaning that 65 

the effect of fire decreases with depth, and organisms below a certain depth are protected from the heat of 66 

the fire by the soil itself. Despite survival at deeper depths, the organisms present near the soil surface are 67 

generally dramatically impacted by fire. The documented effects of fire on the soil microbial community 68 
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include a decrease in overall biomass [20–22] and a significant perturbation of the community structure 69 

[23–27]. Both fungal and bacterial communities have been observed to decrease in richness after severe 70 

wildfire [23–25, 27], although there are notable exceptions [26].  71 

Over a hundred years of macroscopic observation [28–30], combined with recent community DNA 72 

sequencing studies, suggest that a distinct pyrophilous fungal community assembles in wildfire-affected 73 

soils. These pyrophilous fungi produce abundant fruiting bodies commonly seen on the surfaces of burnt 74 

soil and pyrolyzed wood, and more recently these taxa have also been identified via DNA sequencing of 75 

post-fire soils [19, 24–27, 31–38]. Commonly observed pyrophilous fungi include members of the genera 76 

Pyronema, Anthracobia, Geopyxis, Tricharina, Morchella, Peziza, Pholiota, Lyophyllum, Myxomphalia, 77 

and Neurospora. Comparatively less is known about bacterial taxa that respond positively in post-fire soils, 78 

although taxa that appear across recent studies include Paraburkholderia, Arthrobacter, Flavobacterium, 79 

and Massilia [25–27]. To our knowledge, only one recent study has investigated the effect of prescribed 80 

fire on both soil fungal and bacterial communities. Mino et al conducted ten replicate low- and high-81 

intensity prescribed fires in a shrub-encroached prairie ecosystem, and analyzed samples from two time 82 

points; pre-fire and post-fire [31]. They found that high-intensity fire, but not low-intensity fire, reduced 83 

richness of both bacteria and fungi. Additionally, the bacteria Massilia, Domibacillus, and the fungi 84 

Neurospora, Pyronema, Anthracobia, and Penicillium were significant indicators of post-fire samples [31]. 85 

Beyond this example, soil microbial community assembly after prescribed burns has not been deeply 86 

explored. 87 

In this work, we sought to address two major questions. First, does prescribed fire lead to assembly 88 

of a community of pyrophilous organisms similar to those seen after severe wildfires? And second, what 89 

ecological processes drive formation of the community after prescribed fire? To answer these questions, 90 

we deeply sampled two prescribed burn plots and two no-burn control plots over 17 months in a mixed 91 

conifer forest in the Sierra Nevada mountains of northern California, USA. Combining threshold indicator 92 

taxa analysis (TITAN), correlation network analysis, and a model of neutral community assembly 93 

delineated a group of taxa whose presence is likely explained by a deterministic response to prescribed fire. 94 
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Importantly, many members of this pyrophilous subcommunity have been previously described as 95 

responding positively after wildfire, and our analyses add several new taxa to the ranks of potentially 96 

pyrophilous microbes. While this pyrophilous subcommunity likely assembled as the result of selective 97 

processes following prescribed fire, we find that the majority of the postfire community is likely assembled 98 

as the result of neutral processes. This work provides a foundation for building a mechanistic understanding 99 

of the ecological processes that shape post-fire microbial communities. 100 

 101 

MATERIALS & METHODS 102 

Prescribed fire treatments 103 

Prescribed fires were conducted at the University of California’s Blodgett Forest Research Station located 104 

near Georgetown, CA, USA. Blodgett Forest is a mixed conifer forest (mostly Pinus lambertiana, Pinus 105 

ponderosa, and Pseudotsuga menziesi, with some scattered Calocedrus decurrens, Sequoiadendron 106 

giganteum, Abies concolor, and Quercus kelloggii). Soil is in the Holland series, generally characterized as 107 

fine-loamy, mixed, mesic Ultic Haploxeralfs. We established four 10m transects within the forest at roughly 108 

1360m elevation; Hi (38.89598, -120.64800), Lo (38.90016, -120.65648), 1c (38.90562, -120.66345), and 109 

2c (38.90191, -120.65901). The Hi plot was treated with a high-intensity slash-pile burn on 4 Jan 2019. The 110 

Lo plot was treated with a low-intensity broadcast burn on 25 Oct 2018, and plot 2c was treated with a 111 

moderate-intensity broadcast burn on 13 Feb 2020. All prescribed burns were facilitated with fossil fuel 112 

drip torches. Fossil fuel was excluded from transects, instead, ignited fossil fuel was dripped at least two 113 

meters away, and fire naturally traveled across our transects as it burned through dry plant debris. To 114 

measure soil temperature during and after fire, we buried Extech SDL200 data loggers ~0.5m below the 115 

soil surface, and ~2-3m away from our sampling transect. Each data logger was equipped with four 116 

thermocouples, and the data loggers were protected inside a hard plastic shoebox with a hole cut in the side 117 

to allow the thermocouples to exit. Temperature was measured every minute until the batteries died 118 

(roughly four days).  119 

 120 
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Sample collection 121 

Transect sampling locations were randomly assigned without replacement for each plot for the 122 

entirety of our sampling time-series. Prior to burning, and in control plots, 10cm soil cores were collected 123 

using an ethanol-sterilized soil sampler (JMC PN031). After burning, we collected soil core samples from 124 

0-3cm and 3-6cm. Sampling depths were initially determined based on previous work [19] and the data 125 

from our thermocouples. We also conducted a pilot experiment in plot 2c to directly test if sampling depth 126 

affected the resulting observed microbial community. For this pilot experiment, six replicate soil samples 127 

were collected from the following depths at two time points pre- and post-fire; 0-1cm, 1-2cm, 2-3cm, 3-128 

4cm, 4-5cm, 5-10cm, and 10-20cm. In addition, we later pooled equivalent amounts of soil from 0-3cm and 129 

from 0-10cm prior to DNA extraction. Figure S1 and S2 illustrate that there were no significant differences 130 

in the composition or diversity of the microbial communities observed at the scale of 0-20cm in Blodgett 131 

soil. (PERMANOVA p > 0.05, and ANOVA p > 0.1, n = 6). 132 

All plots were sampled at every time point. Triplicate soil samples were collected at least once 133 

immediately prior to burning, once immediately after burning, and then once/month thereafter. To capture 134 

community dynamics associated with the first precipitation event, we increased our sampling frequency 135 

during the weeks following the first precipitation event and the start of the wet season in late November 136 

2018. Multiple cores were collected per sample and immediately pooled in a 50mL conical tube, to a total 137 

volume of ~25-30mL of soil. After collection, samples were transported by car and immediately placed in 138 

a -80 ºC freezer. pH was measured using a soil to water ratio of 1:2.5 within 48 hours of sample collection. 139 

  140 

DNA extraction, PCR amplification, and sequencing 141 

We generally followed the methodology described by Simmons, et al [39]. To isolate total gDNA 142 

from soil, 1.2-1.5g of soil was transferred to a 2mL eppendorf tube and then we followed the Qiagen 143 

PowerSoil DNA extraction kit protocol. We eluted the gDNA on 100ul of DEPC water. 5ng/ul of DNA 144 

was used for simultaneous PCR amplification and illumina library prep with dual 12bp barcodes. Primer 145 

sequences in File S1 [39–41]. Samples were randomly assigned barcodes, and randomly distributed 146 
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 7 

spatially across PCR plates (excluding corners) and sequencing libraries. 100ng of DNA from each sample 147 

was pooled to form a library. Libraries were sequenced via a PE300 strategy on illumina MiSeq, and then 148 

the resulting data were demultiplexed at the UC Davis Genome Center. 149 

 150 

Raw sequence processing 151 

For the ITS sequences, we used AMPtk v1.5.1 (which used VSEARCH v2.15.0) to quality filter 152 

reads, trim off primer sequences, and merge forward and reverse reads together [42]. Merged reads less 153 

than 100bp were filtered out, and remaining reads were trimmed to 300bp. We then used DADA2 v1.14 154 

(via R v4.0.3) to dereplicate the sequences, infer Amplicon Sequence Variants (ASVs), remove chimeras, 155 

assign taxonomy, and ultimately build the tables used in downstream analyses: OTU table, taxonomy table, 156 

and sequence table [43, 44]. The UNITE v.8.3 database was used to assign fungal taxonomy, and FUNGuild 157 

added functional guild information for many taxa [45, 46]. For 16S sequences, we used Quantitative 158 

Insights into Microbial Ecology version 2 (QIIME2 v2021.8) for all our read processing steps [47]. We 159 

used built-in tools to quality filtered reads and to trim reads where the quality score was < 25. QIIME2 160 

incorporates cutadapt [48] to remove primer sequences and merge reads using the default parameters. The 161 

DADA2 [43] step in the QIIME2 pipeline; merged 16S reads were trimmed to 400bp, followed by 162 

dereplication, ASV inference, and chimera removal. The output OTU table was then used to assign 163 

taxonomy using a SILVA 138 SSU database [49, 50]. The QIIME2 pipeline outputs a fasta file containing 164 

all ASVs with their associated sequences, an OTU table, and a taxonomy table which are used for 165 

downstream analyses. Lastly, we removed suspected contaminant ASVs (i.e. those present in sequencing 166 

blanks) from both ITS and 16S  datasets via the decontam v.1.8.0 package in R v.4.0.3 [44, 51].  167 

 168 

Statistics and other analyses 169 

All downstream analyses were performed in R v4.0.3, unless otherwise noted [44]. To make our 170 

data Euclidean, we transformed it with the Hellinger Transformation (decostand function) prior to running 171 

Principal Component Analysis (PCA, via the rda function) [52, 53]. PCA results were plotted using the 172 
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phyloseq v1.36 function, plot_ordination [54]. We used the vegan package v.2.5-7 to calculate diversity 173 

metrics and PERMANOVA [52]. For additional statistical analyses and visualization, we used the following 174 

in R v4.0.3; TITAN2 v.2.4.1 [55, 56], Venn diagram via eulerr v.6.1.0 [58], network modularity test based 175 

on the code from Whitman, et al  using igraph v.1.2.6 [26, 59], plot visualizations via ggplot2 v.3.3.5 [60], 176 

and general data-wrangling via tidyverse v.1.3.0 [61]. The correlation network was calculated using the 177 

C++ program FastSpar v.1.0.0 [62], and visualized with the graphic program CytoScape v.3.9.1 [63]. We 178 

used Burns, et al’s implementation of Sloan’s Community Neutral Model [16, 57] on concatenated 16S and 179 

ITS data for each plot. To investigate how neutral model fit changed over time, we divided our samples as 180 

equally as possible along the timeseries, and then rarefied samples to 6651 ASVs prior to fitting the neutral 181 

model. The fit of the neutral model did not differ substantially over time (Figure S3). 182 

 183 

Data availability 184 

Raw sequencing reads have been submitted to the SRA under accession XXXX. Full results of all 185 

statistics and other analyses can be found in the supplemental materials. All code that was used to process 186 

and analyze the data is publicly available here: https://github.com/TraxlerLab/BlodgettProject 187 

 188 

RESULTS 189 

Experimental prescribed fires  190 

To investigate the effect of prescribed fire on soil microbial communities, we established four ten-191 

meter transects within a mixed conifer forest at the University of California’s (UC) Blodgett Forest 192 

Research Station, which is around 1360m elevation in the Sierra Nevada Mountains, CA, USA (Figure 1A). 193 

Two transects were burned (“Hi” and “Lo”), and the remaining two transects (“1c” and “2c”) functioned as 194 

experimental controls that remained unburned throughout a 17 month sampling time series (Figure 1B). 195 

The two control plots haven’t burned since the UC acquired the property in 1933. However, prior to that, 196 

indigenous people regularly burned the area roughly every 5 - 10 years, up until the gold rush of 1849 and 197 

subsequent rapid European colonization displaced and decimated indigenous populations across the region 198 
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[64]. The Lo plot was treated with low-intensity prescribed fire in 2013 and then again as part of this study 199 

in October of 2018. The Hi plot experienced low-intensity prescribed burns in 2002, 2009, and 2017. In 200 

January 2019, as part of this study, a slash pile (roughly 20m x 10m x 1.5m) was burned to simulate a 201 

higher-intensity prescribed fire (Figure 1B). During the Lo prescribed burn, thermocouples placed 1cm 202 

below the soil surface recorded a maximum temperature of 56.0 °C and returned to ambient temperature 203 

less than 12 hours after the fire began (Figure 1C). Temperatures 2-6cm below the soil surface did not 204 

deviate substantially from the ambient temperature during the Lo burn. During the Hi prescribed burn, 205 

thermocouples placed at 3cm below the soil surface recorded a maximum temperature of 71.7 °C, and 12cm 206 

below the surface reached a maximum temperature of 52.2 °C. Soil temperature after the Hi burn gradually 207 

returned to ambient temperature after four days (Figure 1D). In summary, the heat from the Lo prescribed 208 

burn was relatively low, shallow, and not sustained. In contrast, the heat from the Hi prescribed burn was 209 

relatively high, deep, and sustained.  210 

 211 

Prescribed fire alters soil microbial community composition 212 

To investigate how soil microbial communities responded over time to prescribed fire, we collected 213 

triplicate soil samples from all four plots prior to burning, and then we continued collecting triplicate soil 214 

samples at least once/month, every month (weather permitting) from October 2018 to February 2020. We 215 

amplified and sequenced ITS2 and the V3/V4 region of 16S to analyze the soil fungal and bacterial 216 

communities, respectively. Principal Component Analysis (PCA) and permutational multivariate analysis 217 

of variance (PERMANOVA) found a significant difference between burned and control samples for both 218 

bacterial and fungal communities (p < 0.001, Figure 2A). A scatterplot of fungal Principal Component (PC) 219 

1 and PC2 shows three distinct sample clusters associated with either Hi prescribed burn, Lo prescribed 220 

burn, or the non-burn controls (Figure 2A). In contrast, a scatterplot of bacterial PC1 and PC2 shows control 221 

samples nested within an overlapping region of distinct Hi burn and Lo burn clusters (Figure 2B). For 222 

fungal communities, PC1 correlates with soil pH, whereas PC2 correlates with prescribed fire treatment 223 

(Figure S4). For bacterial communities, PC1 also correlates with soil pH, however none of our measured 224 
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 10 

environmental or experimental variables clearly explain the variation across PC2 (Figure S5). In contrast 225 

to the Hi prescribed burn, the Lo prescribed burn did not affect pH, which highlights that pH is not 226 

necessarily the sole determinant of post-fire microbial community assembly. Season, time since burn, 227 

average daily air temperature, and precipitation did not explain the variation between our samples (Figure 228 

S4 & S5). Prescribed fire generally did not influence diversity or richness over time, with one exception 229 

(Figure 2C & S6). After the Hi plot was burned, fungal Shannon diversity, richness, and to a lesser extent, 230 

evenness were all reduced post-fire, and remained lower than the Lo, 1c, and 2c plots throughout the 231 

sampling time series. Taken together, these results demonstrate that prescribed fire generally had a 232 

significant effect on soil microbial community composition, those effects persisted for 17 months post-fire, 233 

and higher intensity prescribed fire had a stronger effect on fungi than bacteria. 234 

 235 

Indicator taxa associated with changes in community composition following prescribed fire 236 

To identify significant shifts in community composition over time, we conducted a Threshold Indicator 237 

Taxa Analysis (TITAN). TITAN combines change point analysis [64, 65] and indicator species analysis 238 

[66] to find time-points where community composition changed significantly, while also highlighting 239 

dynamic taxa that were indicators of whole-community shifts [55, 56]. TITAN identified two significant 240 

change points along the time series for each of our four plots (Figure 3A and S7). The first change point in 241 

each plot is associated with indicator taxa that generally decline in abundance over time (“negative 242 

responders”), and the second change point is where indicators tend to increase over time (“positive 243 

responders”) (Figure 3). The negative change points for both burned plots occurred immediately following 244 

prescribed fire, and then roughly one year later. In contrast, change points in our control plots occurred 245 

during winter months (Figure 3A). For example, plot 1c possibly experienced community shifts associated 246 

with minimum mid-winter temperatures, while 2c possibly experienced community shifts associated with 247 

the first precipitation event of the wet season (Figure S8). TITAN identified substantially more indicator 248 

taxa in burned plots (Lo = 156, Hi = 121) than in control plots (1c = 33, 2c = 73). A majority of control plot 249 
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indicators were negative responders (1c: 88%, 2c: 64%), whereas burned plot indicators were roughly 250 

evenly distributed between negative and positive responders (Figure 3B). 251 

TITAN indicator taxa in the burned plots include many genera that have been previously described as 252 

fire-responsive (Figure 3B). We compiled a list of microbial genera from previous literature that responded 253 

positively to fire (File S2). We highlighted taxa assigned to these genera as lighter-hued sections in Figure 254 

3B. Notably, this included the fungal genera Pyronema, Geopyxis, Anthracobia, Lyophyllum, and 255 

Myxomphalia, and the bacterial genera Massilia, Flavobacterium, and Blastococcus. Taken together, these 256 

findings demonstrate that fire led to both immediate and delayed effects on soil microbial community 257 

composition, and dynamic responders to fire included previously documented fire-associated genera. 258 

 259 

Prescribed fire intensity drives microbial community substructure 260 

To identify if there was significant network substructure in our community, we first calculated a 261 

correlation network (via FastSpar, which is based on Pearson correlation), and then used Clauset, et al’s 262 

fast greedy clustering method to test for network substructure [67]. Clauset, et al’s test for community 263 

substructure, or modularity, resulted in a Q-value of 0.329, and Q > 0.3 is considered a good indicator of 264 

network modularity [67, 68]. The network was composed of a total of 19 modules, but 98.6% of all taxa 265 

fell within the first three modules (Supplemental File S3), thus we focus on Modules 1-3. To understand 266 

factors that might underlie this modularity, we compared module assignment to relative abundances in each 267 

plot and to TITAN results (Figure 4). We set a conservative threshold to determine if a taxon was highly 268 

abundant in each sample; greater than the 95th percentile for all abundance values. 41% of all taxa in the 269 

network were consistently below the 95th percentile, thus not highly abundant (black in Figure 4A). 24% of 270 

all taxa were highly abundant in both prescribed burn and control plots, thus uninformative (gray in Figure 271 

4A). 22% of all taxa were highly abundant in burned plots, but not control plots, and 70% of these burn-272 

abundant taxa were assigned to network Modules 2 and 3 (red in Figure 4A). In contrast, the remaining 273 

13% of all taxa were highly abundant in control plots, but not burned plots (blue in Figure 4A), and 77% 274 

of these control-abundant taxa were assigned to Module 1 (Figure 4A). A similar pattern was maintained 275 
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when the network was filtered for TITAN indicator taxa; Module 1 was enriched for indicators of the 276 

control plots (44% controls, 38% Lo, 16% Hi) and Modules 2 & 3 were dominated by prescribed burn 277 

indicators. Notably, indicators of the Hi prescribed burn largely fell within Module 2 (65% Hi, 17% Lo, 278 

18% controls), whereas Lo prescribed burn indicators were predominantly assigned to Module 3 (71% Lo, 279 

7% Hi, 22% controls). Taken together, these results point toward cohorts of microbial taxa that responded 280 

positively (Modules 2 & 3), or negatively to fire (Module 1). This network substructure further 281 

differentiated between taxa that were indicators for either the low-intensity burn treatment or high-intensity 282 

burn treatment, indicating that the soil microbial community responded uniquely to fires of differing 283 

intensities.  284 

 285 

A combination of neutral and deterministic processes drive soil community assembly patterns  286 

To illuminate broad ecological processes driving community assembly, we investigated the 287 

contribution of neutral and deterministic processes in structuring the soil microbial community. We fit the 288 

Sloan Neutral Community Model to our data [16, 57], and then examined the taxa that fell within (neutral) 289 

or outside (deterministic) the neutral prediction (Figure 5). On average 92.8% (± 0.7%) of taxa in each of 290 

our plots fit the neutral prediction (Figure 5A), and the neutral model fit was roughly equivalent across all 291 

plots (R2 = 0.63 - 0.73) (Figure 5B). Importantly, the subsets of taxa identified by both TITAN and the 292 

correlation network analysis were enriched for taxa that fell outside the neutral prediction (Figure 5A). 293 

Roughly half of all taxa identified as indicators by TITAN were non-neutral, and 54% of taxa in network 294 

modules 1 - 3 were also nonneutral. Notably, Module 2 was enriched for taxa that were non-neutral in the 295 

Hi burn plot, whereas Module 3 was enriched for non-neutral taxa in the Lo burn plot. Several previously 296 

described fire-responsive taxa fell outside the neutral prediction in both burned plots, which are highlighted 297 

in Figure 5B. Lastly, Sloan’s Neutral Community Model estimates the rate of dispersal, or migration (m) 298 

into the community. This migration value in all plots was close to zero (m < 0.01), indicating that dispersal 299 

likely has very limited influence on community structure in either control or burned plots. Together these 300 

data demonstrate that a majority of taxa in our samples are present due to stochastic, or neutral processes. 301 
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However, the neutral model did not predict the presence of the majority of indicator taxa that dynamically 302 

responded to fire, implying that their presence was likely the result of deterministic processes, i.e. selection. 303 

 304 

Pyrophilous genera associated with prescribed fire 305 

We leveraged the results of TITAN, neutral model fit, and the correlation network analyses to 306 

independently identify pyrophilous taxa within our data (Figure 6). Figure 6A-C details our methodology 307 

for identifying pyrophilous taxa. Briefly, we subset the correlation network for the 96 taxa that were unique 308 

to burned plots as TITAN indicators and/or non-neutral (Figure 6A&B), and then further filtered this list 309 

for taxa that were highly abundant only in burned plots (Figure 6C). These filtering steps resulted in nine 310 

unique genera, which we consider to be pyrophilous: the fungi Pyronema, Geopyxis, Lyophyllum, 311 

Myxomphalia, Rhodosporidiobolus, and the bacteria Massilia, Bacillus, Flavobacterium, and Cellvibrio. 312 

These taxa are highlighted in the network in Figure 6B, and we illustrate their average normalized relative 313 

abundance over time in Figure 6D. All pyrophilous genera except Cellvibrio were assigned to network 314 

Module 2. Cellvibrio fell within Module 3, along with one of three Flavobacterium ASVs (Figure 6B). The 315 

average abundance of the pyrophilous genera over time in both the Lo burn and control plots generally 316 

mirrors precipitation events (Figure S8), however abundances were substantially higher after burning and 317 

decreasing over time. Pyronema dominated immediately after the Lo prescribed burn prior to any 318 

precipitation (the Lo plot was burned on 16 Oct 2018 and the first rain was on 20 Nov 2018). Following 319 

the start of the rainy season, Pyronema and all the pyrophilous bacteria peaked in abundance (Figure 6D). 320 

The Hi plot was treated with prescribed fire during a mid-winter dry period, and precipitation occurred one 321 

day after starting the fire. Geopyxis peaked in abundance immediately after the Hi burn (Figure 6D). 322 

Lyophyllum, Bacillus, and Massilia also experienced a peak in abundance at the first sampling time point 323 

following the Hi prescribed burn. In contrast to the Lo burn, Pyronema peaked in abundance three months 324 

after the Hi burn, along with Rhodosporidiobolus, Flavobacterium, and Massilia. All nine pyrophiles 325 

increased dramatically in abundance following the Hi prescribed burn. In contrast, in the Lo plot, 326 

Lyophyllum and Rhodosporidiobolus were not abundant at any time point. In conclusion, this combined 327 
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analysis independently identified nine pyrophilous genera that responded strongly and positively, likely 328 

through deterministic processes associated with prescribed fire at Blodgett Forest.  329 

 330 

DISCUSSION 331 

As the incidence of wildfire increases with ongoing climate change, strategies for mitigating their 332 

impact, including prescribed burns, are becoming increasingly relevant. Here, we sought to understand the 333 

impact of prescribed fire on soil fungal and bacterial communities, and the ecological processes that 334 

influence post-fire microbial community assembly. We undertook extensive time-course sampling of two 335 

prescribed burn plots, one which experienced a low intensity fire, and a second that experienced a higher 336 

intensity fire. We found that fire significantly altered both the fungal and bacterial communities in the 337 

burned plots, as compared to unburned control plots. Using a series of downstream analyses, we conclude 338 

that, while a large portion of the post-prescribed burn community is likely assembled via neutral processes, 339 

a subcommunity that includes pyrophilous organisms likely arises through deterministic processes. A 340 

number of other studies have begun to paint a picture of post-fire microbial community structure [12, 22, 341 

24, 26, 31, 69–73], and this work further builds on those by identifying members of the subcommunity that 342 

deterministically respond to fire. In doing so, this work lays the foundation for building a process-driven 343 

understanding of microbial community assembly in the context of the classical disturbance regime of fire. 344 

 Neutral processes such as passive dispersal and ecological drift have been shown to be important 345 

during the colonization of unoccupied environments, and a recently burned landscape may seem, 346 

superficially, like such an environment. However, many organisms survive below the soil surface even 347 

during intense wildfires [12], and organismal survival becomes more likely with decreasing fire intensity. 348 

This notion is consistent with our data showing that lower-intensity prescribed fires had a minimal impact 349 

on richness (Figure 2C-D). We also found that the majority (~93%) of the soil microbial community at 350 

Blodgett Forest could be accounted for by a model of neutral assembly (regardless of fire occurrence). 351 

Thus, the community structure in our burned plots likely reflects a combination of; (1) the legacy of 352 

neutrality in the soil microbial communities that was present prior to fire, (2) de novo community assembly 353 
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through neutral processes, and (3) selection of a subcommunity of microbes adapted to postfire 354 

environments. 355 

To identify members of the fire-responsive subcommunity, we used TITAN and a correlation 356 

network analysis, in conjunction with a neutral model. TITAN highlighted individual indicator taxa whose 357 

abundances were dynamic across time, while correlation network analysis identified sub-groups of taxa 358 

whose members were linked through correlations in abundance, irrespective of time. Importantly, the 359 

subcommunity identified by the combined correlation analysis and TITAN was enriched for non-neutral 360 

taxa (Figure 5A), indicating that deterministic processes likely played an important role in the assembly of 361 

this fire-responsive subcommunity. Fire is a dramatic selective force that has a myriad of effects on soil, 362 

such as direct heating during the fire and enduring post-fire effects including increased pH, increased 363 

hydrophobicity, decreased bioavailability of nutrients (especially nitrogen), and the deposition of a layer of 364 

PyOM and mineral ash. Our data do not allow us to directly distinguish between these possible selective 365 

forces associated with prescribed fire. However, it is notable that in our Lo burned plot we did not observe 366 

any significant changes in pH, and there was little-to-no effect of heat below the soil surface (Figure 1C, 367 

S4 & S5), yet we still observed a significant effect on community composition. Thus, we hypothesize that 368 

factors beyond temperature and pH, such as deposition of PyOM, may underlie assembly of the fire-369 

responsive sub-community following low-intensity fire. Further investigation will be required to test this 370 

hypothesis in situ.   371 

Taxa that fall above the neutral prediction in Sloan’s Neutral Community Model are found more 372 

frequently than would be predicted by their abundance in the metacommunity. Conversely, taxa that fall 373 

below are highly abundant in fewer samples than would be expected, resulting from a patchy distribution 374 

across samples. Burns, et al suggested that taxa above the neutral prediction are being selected for, whereas 375 

taxa below may be seen as ‘invasive’, or are dispersal limited, or are selected against. It’s notable that most 376 

taxa that we identify as pyrophilous fell below the neutral partition in our burned plots (Figure 5B), 377 

indicating that they were found at high abundance with relatively low frequency. Such a patchy distribution 378 

may be explained by the fact that the effects of fire across a landscape result in a spatially heterogeneous 379 
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mosaic [74, 75]. For example, individual soil patches experience varied levels of perturbation from irregular 380 

heating, as well as non-uniform deposition of PyOM and changes in pH. Alternatively, patchy distributions 381 

of locally abundant taxa can arise as a result of interference competition that leads to spatial segregation of 382 

competing organisms [76, 77], although more study will be required to link this possibility to taxa that fall 383 

below neutral model predictions.  384 

 While there are numerous previous descriptions of pyrophilous taxa (File S2), we add to this body 385 

of work by using multiple analyses to independently identify pyrophilous taxa in post-prescribed burn 386 

environments.  Specifically, we included taxa that; (1) were dynamic over time in burned plots according 387 

to TITAN, (2) showed strong correlation patterns with other community members, (3) fell outside the 388 

neutral expectation in burned plots, and (4) were only highly abundant in burned plots (Figure 6A-C). Only 389 

nine genera passed through this stringent filtering process, six of which have been previously reported as 390 

pyrophilous (Pyronema, Myxomphalia, Lyophyllum, Geopyxis, Massilia, and Flavobacterium). The three 391 

genera that are currently absent from other pyrophile literature are Bacillus, Cellvibrio, and 392 

Rhodosporidiobolus. Bacillus (Firmicutes) are well-known, ubiquitous soil bacteria that form remarkably 393 

resistant spores, which could be important for surviving the heat of intense fires. Beyond survival, we note 394 

that several species of Bacillus are known to degrade polycyclic aromatic hydrocarbons, which may be 395 

relevant in the consumption of PyOM [78, 79]. Cellvibrio (Gammaproteobacteria) are also common soil 396 

inhabitants that have recently drawn biotechnology interest for their production of xylanases and other 397 

carbohydrate active enzymes [80], and some isolates have demonstrated the ability to fix nitrogen [81], 398 

which could be critically important for life in nitrogen-depleted post-fire soils [82]. Rhodosporidiobolus is 399 

a red yeast in the Pucciniomycotina (Basidiomycota) that was first described in 2015 [83] and has since 400 

been found to increase in abundance after biochar addition to tea orchard soil [84], and demonstrated a 401 

robust ability to degrade lignin and other aromatic compounds [85]. These examples point toward the notion 402 

that Rhodosporidiobolus may be able to utilize the PyOM component of a recently burned environment, 403 

similar to Pyronema domesticum [86]. 404 
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All microbial communities are assembled through some combination of the deterministic process of 405 

ecological selection (encompassing environmental filtering and biotic interactions) and the stochastic 406 

processes of passive dispersal, ecological drift, and mutation/speciation. Here we used parallel analyses to 407 

identify taxa that were temporally dynamic, showed patterns of co-occurrence, and whose presence was 408 

likely attributable to deterministic processes. In delineating this pyrophilous subcommunity, this work lays 409 

the foundation for future investigations into the mechanisms that drive pyrophilous community assembly 410 

in post-fire environments. Furthermore, we speculate that interactions among members of this sub-411 

community may impact the degradation and reintegration of pyrolyzed organic matter in areas under 412 

pressure from increasingly frequent wildfires. Finally, this work sets the stage for understanding the role of 413 

this subcommunity in stimulating the recovery of the broader community of micro- and macro-organisms, 414 

while also providing a starting point for future studies aimed at harnessing deterministic interventions to 415 

enhance community resilience to fire.  416 

 417 
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FIGURE LEGENDS 650 

 651 

Figure 1: Site description and soil temperature during experimental burns. 652 

(A) Topographic map showing the location of each transect at Blodgett Experimental Forest. Brown 653 

topographic lines denote elevation in meters, solid black lines indicate paved roads, dashed black lines 654 

indicate dirt roads, purple line indicates the Blodgett Forest property boundary, and blue lines are streams. 655 

“1c” = no burn control #1, “2c” = no burn control #2, “Lo” = low-intensity burn, “Hi” = high-intensity 656 

burn. (B) Photos each transect. Purple dashed line highlights the location of each 10m transect. Photos of 657 

1c and Lo were taken one week after fire in October 2018. The 2c and Hi transect photos we taken the same 658 

day as the start of the fire in January 2019.  (C & D) Soil temperature measured every 15 minutes starting 659 

a few hours prior to each experimental burn near the Lo transect (C), and Hi transect (D). Two 660 

thermocouples were placed at each depth, and temperature measurements continued for at least four days, 661 

the x-axis is divided into 12-hour increments.  662 

 663 

Figure 2. Fire alters soil microbial community structure 664 

(A & B) Principal Component Analysis (PCA) on Hellinger-transformed ITS (A) & 16S (B) amplicon 665 

community sequencing data. Axes are the two Principal Components (PC) that explained the most variation 666 

in the data (% variation noted on each axis). Ellipses = 95% confidence interval. PERMANOVA p < 0.001 667 

for burned vs. unburned in both ITS and 16S. (C & D) Community richness over time for ITS (C) and 16S 668 

(D) data. Points are individual samples, and the data for each plot are summarized by fitting a local 669 

polynomial regression line. The shaded area around each line indicates a 95% confidence interval.  670 

 671 

Figure 3. Shifts in microbial community composition associated with fire and TITAN identified a 672 

greater number known fire-responsive taxa as indicators in fire-treated plots 673 

(A) Total number of indicator taxa identified by TITAN as either positively or negatively responsive, and 674 

the corresponding change point date for each plot. Dashed vertical line and flame emoji denote the time-675 
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point at which burned plots were burned.  (B) Proportion of known fire-responsive taxa within positive 676 

(red) or negative (blue) response groups for Control 1, Control 2, Hi-burn, and Lo-burn plots. 677 

 678 

Figure 4. Correlation network clusters taxa by fire treatment 679 

Correlation network arranged into modules defined by greedy clustering [67], which identified a total of 19 680 

modules, modules with less than 10 nodes were excluded. Nodes are taxa, and lines represent a significant 681 

correlation between taxa (p < 0.01, FastSpar). Purple line = positive correlation, black line = negative 682 

correlation. (A) Complete network. For clarity, only edges and nodes with correlations > 0.3 are shown. 683 

Node colors indicate the treatment(s) in which the taxon was highly abundant; red = burn, cyan = control, 684 

grey = both burn and control, and black indicates taxa that were consistently in low abundance (< 95th 685 

percentile) and subsequently excluded from the presence/absence analysis. (B) Subset of the complete 686 

network showing the 335 taxa that were identified as significant indicators by TITAN. All significant 687 

correlation values are shown (p < 0.01), and line width is proportional to the correlation value. Node colors 688 

indicate in which plot the taxon was identified by TITAN as an indicator, briefly, cool colors represent 689 

control plots and warm colors represent burned plots. 690 

 691 

Figure 5. A combination of neutral and deterministic processes drive community assembly patterns 692 

(A) Stacked bar-plots illustrating the number of taxa that fell within, above, or below the neutral model in 693 

each plot, for all taxa and subsets of taxa based on TITAN or the correlation network analysis. (B) The 694 

Sloan Neutral Community Model fit to ITS and 16S data in each plot. The neutral prediction is a solid dark-695 

grey line, with 95% confidence interval around indicated with dashed dark-grey lines. Taxa that fall within 696 

this 95% confidence interval are colored grey. Taxa that fall outside the neutral predicted are colored either 697 

orange (above) or purple (below). Taxa that were found to be indicators via TITAN are circled in black, 698 

and of these indicators, those that have been previously described as fire-responsive are circled in either 699 

green (fungi) or cyan (bacteria). Fire-responsive TITAN indicators that fell outside the neurtral prediction 700 

are named. R2 quantifies how well the neutral model fit the data, and m is the estimated migration rate. 701 
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 702 

Figure 6. Identification of pyrophilous genera at Blodgett Forest, and their dynamics over time. 703 

(A) Venn Diagram showing the number of taxa that were either identified as indicators by TITAN or fell 704 

outside the neutral prediction. (B) Filtered version of the correlation network depicted in Figure 4. This 705 

network was filtered for the 96 ASVs that were unique to burns in A. Pyrophilous taxa are highlighted and 706 

labeled (green outline = fungus, blue outline = bacteria). Lines thickness it proportional to the correlation 707 

value (purple = positive, black = negative). Node colors indicate the plot in which the taxon was an 708 

indicator. (C) Diagram describing the criteria for defining pyrophilous genera in our dataset. (D) Relative 709 

abundance of pyrophilous genera over time in each plot. Dashed vertical line and flame emoji denote the 710 

time-point at which burned plots were burned. Each point represents the average abundance of all ASVs 711 

for each genus at each timepoint, and average abundances were normalized to the maximum average 712 

abundance for each genus.  713 

 714 
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