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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Hotter drought and wildfire alter soil 
microbial communities. 

• Fungal and bacterial richness and di-
versity decrease with increasing 
disturbance. 

• Fungal communities were more respon-
sive than bacteria to the disturbances. 

• Key functional groups, e.g. mycorrhizal 
fungi, decreased after drought +

wildfire.  
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A B S T R A C T   

Mediterranean forest ecosystems will be increasingly affected by hotter drought and more frequent and severe 
wildfire events in the future. However, little is known about the longer-term responses of these forests to multiple 
disturbances and the forests' capacity to maintain ecosystem function. This is particularly so for below-ground 
organisms, which have received less attention than those above-ground, despite their essential contributions 
to forest function. We investigated rhizosphere microbial communities in a resprouting Eucalyptus marginata 
forest, southwestern Australia, that had experienced a severe wildfire four years previously, and a hotter drought 
eight years previously. Our aim was to understand how microbial communities are affected over longer-term 
trajectories by hotter drought and wildfire, singularly, and in combination. Fungal and bacterial DNA was 
extracted from soil samples, amplified, and subjected to high throughput sequencing. Richness, diversity, 
composition, and putative functional groups were then examined. We found a monotonic decrease in fungal, but 
not bacterial, richness and diversity with increasing disturbance with the greatest changes resulting from the 
combination of drought and wildfire. Overall fungal and bacterial community composition reflected a stronger 
effect of fire than drought, but the combination of both produced the greatest number of indicator taxa for fungi, 
and a significant negative effect on the abundance of several fungal functional groups. Key mycorrhizal fungi, 
fungal saprotrophs and fungal pathogens were found at lower proportions in sites affected by drought plus 
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wildfire. Wildfire had a positive effect on bacterial hydrogen and bacterial nitrogen recyclers. Fungal community 
composition was positively correlated with live tree height. These results suggest that microbial communities, in 
particular key fungal functional groups, are highly responsive to wildfire following drought. Thus, a legacy of 
past climate conditions such as hotter drought can be important for mediating the responses of soil microbial 
communities to subsequent disturbance like wildfire.   

1. Introduction 

Chronic warming and drying and acute heatwave conditions asso-
ciated with climate change have been associated with forest die-off 
events in many regions (Allen et al., 2010; Allen et al., 2015; Hart-
mann et al., 2018). These span all forested continents, and different 
climatic zones, species composition, and include tropical, temperate, 
Mediterranean, semi-arid and boreal ecosystems (Cobb et al., 2017). 
Global heating has also driven indirect impacts such as changing the fire 
season timing and length (Jolly et al., 2015) and increasing fire size and 
frequency in many regions (Brando et al., 2014; Hanes et al., 2019; 
Cattau et al., 2020). Recent catastrophic wildfires in Australia (Nolan 
et al., 2021), and elsewhere (2016 Canada, 2017 Chile, USA, and 
Portugal, 2018 Northern Europe, South Africa, and USA, 2019 Bolivia, 
2020 USA) (Duane et al., 2021), as well as drought and heat induced- 
forest die-off events, underscore the need to understand how forest 
functioning will respond to the intersecting disturbances of drought and 
wildfire. 

Research documenting disturbances (drought, wildfire, heatwaves, 
etc.) and their interactions is rapidly expanding, though, to date, the 
emphasis has disproportionately been vegetation and vertebrate fauna 
focussed, despite the widely recognised importance of belowground 
biota (e.g., Birnbaum et al., 2019). Microbial communities (such as 
fungi, bacteria, and archaea) are an integral part of forests and critical 
for ecosystem functioning and biogeochemical processes, including 
decomposition, nutrient cycling, carbon sequestration and storage 
(Hartnett and Wilson, 1999; Bardgett and Van Der Putten, 2014; Bass 
and del Campo, 2020; Lagueux et al., 2021). Fungi are essential de-
composers because they convert recalcitrant organic matter into easier- 
to-digest forms that other organisms can use (Certini et al., 2021). Fungi 
also bind mineral particles together into more stable aggregates via long 
hyphae to enhance soil porosity and permeability (Rillig and Mummey, 
2006; Certini et al., 2021). Root-associated mycorrhizal fungi form 
symbiotic relationships with >90 % of terrestrial plant species and 
improve plant uptake of water and nutrients (Sharma et al., 2013), assist 
with recruitment, increase plant biomass (Siefert et al., 2018; Lagueux 
et al., 2021) and protect host plants against drought (Augé, 2001; Akema 
and Futai, 2005), disease and stress (Newsham et al., 1995). Bacteria 
represent an important, though less explored, part of the microbial 
community in forest soils (Lladó et al., 2017). Bacteria contribute to a 
range of essential processes such as the decomposition of organic matter 
(Stursova et al., 2012), and N fixation (Reed et al., 2011). They also take 
part in decomposition of dead fungal mycelia and in rhizospheres of 
forest trees, and they interact with plant roots and mycorrhizal fungi as 
commensalists or mycorrhizal helpers (Lladó et al., 2017). 

Soil microbial communities are highly responsive to drying and 
warming associated with climate change (De Vries et al., 2012; De Vries 
and Shade, 2013; Baldrian et al., 2023). Drought has been shown to 
impact activity and composition, likely due to high sensitivity to soil 
moisture changes, but microbial responses exhibit high levels of varia-
tion (Cregger et al., 2012; Bastida et al., 2017; Ochoa-Hueso et al., 
2018). A large-scale precipitation manipulation experiment in semi-arid 
piñon-juniper woodland (Pinus edulis- Juniperus monosperma) in New 
Mexico, USA, showed that soil moisture was the main driver of the 
composition of soil microbial communities - fungal abundance in plots 
droughted for one year was 4.7 times greater upon wetting up (Cregger 
et al., 2012). In a global meta-analysis of the impacts of global change 
factors on soil microbial diversity and functionality, Zhou et al. (2020) 

found that reduced precipitation generally increased fungal richness but 
did not change bacterial richness. Fungi are thought to be more tolerant 
of water stress than bacteria due to their ability to accumulate osmo-
regulatory solutes that do not impair metabolism, and their filamentous 
structure that facilitates substrate exploration (Brown, 1990; Manzoni 
et al., 2012). However, other studies have found the opposite pattern (e. 
g., Bastida et al., 2017). Exploring and understanding these varied re-
sponses of microbial communities to drought will improve our predic-
tive capacity and management actions in the future (Birnbaum et al., 
2019; Lagueux et al., 2021). 

Wildfire can impact the survival and/or recolonisation of soil mi-
crobial communities in different ways; directly, via soil heating affecting 
the survival of mycelium and spores, and indirectly, by impacting the 
survival and growth of host plants, or by changing the physio-chemical 
properties of the soil such as pH, soil moisture and nutrient availability 
(Prendergast-Miller et al., 2017; Bowd et al., 2021). Bacteria generally 
resist direct fire effects better than fungi (Hart et al., 2005; Pressler et al., 
2019) because although the immediate fire-induced changes in bacteria 
abundance and diversity often are substantial, recovery can be relatively 
fast due to rapid reproductive capacity (Certini et al., 2021). Fire effects 
on fungi are extremely variable, depending on their traits and tolerance, 
vegetation and soil type, and fire severity and frequency (McMullan- 
Fisher et al., 2011; Fox et al., 2022). The understanding of microbial 
communities, their associated functional processes, and fluxes in these 
in response to combinations of disturbances, such as drought and fire, is 
important for managing forests into the future, given that in some re-
gions, these disturbances are predicted to increase in the future (IPCC, 
2022). Advancing this understanding will depend on our ability to 
accurately characterize the plant-soil-microorganism relationship (Von 
Rein et al., 2016). 

Mediterranean climate type ecosystems, given their climatic char-
acteristics, may be vulnerable to projected changes in climate leading to 
increased aridity, such as higher drought, fire frequency and severe fire 
weather days (Batllori et al., 2013; Newbold et al., 2020; IPCC, 2022). 
Such multiple disturbances may have long-lasting impacts on ecosystem 
composition, structure, and function (Turner, 2010; Buma, 2015; Wal-
den et al., 2023). Mediterranean southwestern Australia provides an 
important opportunity to study the impacts of chronic and acute 
droughts, heatwaves, and other disturbances, such as wildfire. The re-
gion has experienced chronic drying since the 1970s, an acute drought 
in 2010, followed by a series of heatwaves in early 2011 (Bates et al., 
2008; Cai et al., 2011; Ruthrof et al., 2018). We took advantage of this 
regional event followed by a large wildfire in 2016 (the Waroona 
Bushfire – 69,000 ha) which burnt over impacted stands. This enabled us 
to sample wildfire and drought separately, and in combination alongside 
unimpacted controls (some areas had drought induced die-off and others 
did not; please see methods). Our overarching aim was to quantify the 
responses of soil fungal and bacterial communities to wildfire following 
a legacy of drought, in terms of species richness, diversity, composition, 
and functional types. We also examined community metrics of diversity 
and richness in relation to measured forest stand attributes to search for 
relationships between above and below ground dynamics. Our expec-
tation was that wildfire following drought would significantly affect, 
and perhaps reduce, species richness, and abundance of important mi-
crobial functional types, particularly in the fungal community. 
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2. Materials and methods 

2.1. Study site 

The Northern Jarrah Forest (NJF) is in southwestern Australia and 
covers an area of 1,127,600 ha (Havel, 1975). The dominant canopy 
species are Eucalyptus marginata Sm. (1802), and to a lesser extent, 
Corymbia calophylla (Lindl.) K.D.Hill & L.A.S.Johnson (1995), with a 
midstorey dominated by Allocasuarina fraseriana (Miq.) L.A.S.Johnson 
(1982), Banksia grandis Willd. (1798), and Persoonia longifolia R.Br. 
(1810). The forest ranges from a tall, closed forest in the south, to an 
open dry sclerophyll forest in the northeast (Dell and Havel, 1989). The 
NJF occurs on laterite duricrust caprock overlying podzol clay profile 
with depths of ~30 m to >100 m, and a granite bedrock that occa-
sionally forms outcrops (Churchward and Dimmock, 1989). 

The climate is Mediterranean type, with cool, wet winters, and 80 % 
of rainfall occurring between April and October (Bates et al., 2008), and 
dry and hot summers, with drought periods lasting up to 4–7 months 
(Gentilli, 1989). A rainfall gradient exists across the region, ranging 
from >1100 mm yr-1 in the west, to ~700 mm yr-1 to the northeast 
(Gentilli, 1989). Over the last 50 years, the southwestern Australian 
region has experienced a chronic decrease in rainfall (reduction of 16 % 
in April–October rainfall since 1970, BOM/CSIRO, 2020), which is 
unique for the last 2000 years, with just two other earlier droughts of 
similar duration and intensity (Zheng et al., 2021) and with substantial 
variation in the past 700 years (O'Donnell et al., 2021). The region has 
also experienced a gradual increase in temperature (increase of 1.1 ◦C 
since 1910, DWER, 2021) and acute climatic events including droughts 
and heatwaves (Cai et al., 2011; Ruthrof et al., 2018). Recent work has 
shown that the number of days of >40 ◦C in the Capital, Perth, has 
doubled when comparing 1910–1939 and 1989–2018 (Breshears et al., 
2021). Drought and heatwave events are predicted to increase in this 
region in the future (Hope et al., 2015; Andrys et al., 2017; Ukkola et al., 
2020). 

Acute drought and a series of heatwaves in 2010/2011 led to 
~16,000 ha of the NJF experiencing varying levels of canopy die-off in 

early 2011 (Matusick et al., 2013). Sites severely affected were char-
acterised by proximity to rock outcrops, high elevations, steep slopes, 
and lower water holding capacity soils, and were more clustered in xeric 
sites (Brouwers et al., 2013; Andrew et al., 2016). Additionally, drought- 
impacted sites examined using ERT (electrical resistivity tomography) 
were shown to have shallow bedrock and thinner soils (McGrath et al., 
2023). In January 2016, part of the NJF experienced a lightning-ignited 
summer wildfire, the Waroona Fire (Ferguson, 2016; McCaw et al., 
2016). The fire burnt 69,165 ha of native forest and farmland, 
destroying much of the town of Yarloop. 

For this study, we chose 14 forest sites which are part of a broader 
network of research sites (Walden et al., 2023) (Fig. 1). Eight sites had 
experienced wildfire (four of which had experienced drought-induced 
forest die-off, and four which had not), and six sites were unburnt 
(three of which had experienced drought-induced forest die-off, and 
three which had not). 

To determine the location of drought-induced die-off sites, several 
criteria were used. First, a model was developed by Brouwers et al. 
(2015) using data collected on the forest die-off event in the NJF in 2011 
(Matusick et al., 2013). These data were used to create a map inferring 
drought and heat sensitivity to drought/heatwave events across the NJF, 
using elevation, distance to rocky outcrops, rainfall, temperature, and 
slope. The model was then used to delineate potential areas of pre-fire 
drought stress within the wildfire perimeter. The model was also used 
to choose sites that had a low probability of being impacted by drought. 
Second, sites were ground validated to ensure there were no signs of pre- 
wildfire drought stress, based on plant species association with drought: 
the midstorey tree, Banksia grandis, rarely occurs in drought/heatwave 
affected areas as they are more susceptible than other species to drought 
mortality (Matusick et al., 2013; Steel et al., 2019). Third, drought- 
affected sites were also characterised by structural evidence of the 
drought-induced canopy collapse reported by Matusick et al. (2013), 
with epicormic resprouts of a size that would have developed following 
this disturbance event (2011). 

Based on measures of surface fuel consumption and remotely sensed 
fire severity, there was no evidence of difference in fire severity across 

Fig. 1. Location of study sites located in the Northern Jarrah Forest (NJF forest extent, grey shaded area), southwestern Australia, including sites that were unburnt 
and burnt by wildfire, and affected by drought (low and high drought intensity). The stippled area indicates the Waroona Fire boundary. 
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pre-fire drought intensity conditions (see Walden et al., 2023 for details 
of image processing and generation of fire severity products). Therefore, 
there was no evidence of prior drought associated with systematic dif-
ferences in fire severity enabling us to sample all conditions. Thus, the 
conditions presented a factorial design of drought and fire, and the two 
factors were largely independent from one other. 

At each of the 14 sites, plots were established by Walden et al. (2023) 
following a modified Forest Inventory and Analysis assemblage (Bech-
told and Scott, 2005). Each site contained four plots of variable radius, 
made up of a central plot with three plots orientated at 0◦, 120◦, and 
240◦ from the central plot. The centre of each of these plots was at least 
35 m from the middle of the centre plot. Plot configuration was altered 
only if the forest condition changed rapidly, or the subplot location fell 
on a track or road. 

Above-ground forest stand variables were measured in 2016 as part 
of a larger study examining forest responses to drought and wildfire in 
this region (Walden et al., 2023) and were used to understand what may 
be influencing fungal and bacterial communities. In each plot, live 
canopy height (using a TruPulse 360 hypsometer, Laser Technology Inc., 
CO, USA) and diameter at breast height (DBH) were measured for each 
tree. Basal area (BA) was then calculated. In 2019, when soil samples 
were collected for this study (see below), canopy cover (using a spherical 
densiometer, after Lemmon, 1956) was measured at a subset of the plots, 
1 m from the centre of each plot in each of the four cardinal directions, 
facing outwards. 

2.2. Soil collection for microbial analysis 

Soil was collected from beneath live, adult E. marginata trees in 
October 2019 (four years following the wildfire, and eight years 
following the drought induced forest die-off event). We purposely 
avoided the initial post-fire period to capture longer term trajectories. At 
four plots at each site, two E. marginata trees were chosen. Four soil 
samples, one from each cardinal direction, were collected from the 
rhizosphere (50 g each) from the top 5 cm of soil, 50–100 cm from the 
base of each tree. The four samples were bulked and placed into a 
labelled plastic bag. Soil samples were taken with a different sterilised 
plastic spoon for each tree. Samples were kept in an esky (cooler) with 
ice in the field before being transferred to a -20 ◦C freezer on the same 
day. Following storage, each bulked soil sample was homogenised and 
passed through a sterilised 2 mm sieve to remove leaves, pebbles, and 
fine debris in March 2021 prior to DNA extraction. 

2.3. DNA extraction and sequencing 

Soil samples from the two trees per plot were bulked to produce a 
total of N = 56 samples (16 for burnt + low drought, 16 for burnt + high 
drought, 12 for unburnt + low drought and 12 for unburnt + high 
drought). Total DNA was extracted from 0.25 g of the 56 soil samples 
using a PowerSoil DNA extraction kit (Qiagen) following the protocols 
specified by the manufacturer. Extraction controls (an extraction with 
no soil template added) and PCR negative controls (no sample added) 
were used to determine that there was no contamination during DNA 
extraction and amplification. Extracted DNA concentration was checked 
on a Nanodrop One spectrophotometer (ThermoFisher) for the threshold 
of a minimum of 5 ng•μL− 1, which was met in all instances except 
extraction controls, which had nil detectable DNA, prior to 
amplification. 

All samples were sent to the Australian Genome Research Facility 
(AGRF) in Melbourne, Australia, for sequencing using Illumina MiSeq™. 
The ITS2 region was amplified from soil DNA using the primer fITS7 
specific for higher fungi (Ihrmark et al., 2012) and the general primer 
ITS4 (White et al., 1990). To examine the bacteria present in the sam-
ples, the V3-V4 region of the 16S rRNA gene was sequenced using 341F 
and 805R primers (Herlemann et al., 2011; Wasimuddin et al., 2020). 

2.4. Bioinformatics 

Fungal ITS and bacterial 16S sequences were demultiplexed using 
the demultiplex function in the insect package (Wilkinson et al., 2018), 
and subsequent datasets were processed using the DADA2 bioinfor-
matics pipeline in R 4.1.0 programming language (R Core Team, 2017) 
and RStudio v4.1.0 (Callahan et al., 2016; RStudio Team, 2021). ITS 
primers were removed from demultiplexed sequences using Cutadapt 
(Martin, 2011) due to variable sequence length of this region while 16S 
primers were removed within the DADA2 pipeline. All sequence reads 
were subjected to trimming, filtering, and quality control using the 
recommended settings where at the filter and trim step ITS merged pairs 
were dropped if below a minimum length of 50 basepairs while 16S 
sequences were kept for merged pairs between 280 and 275 basepairs. 
Retained sequences were clustered at the nucleotide level to amplicon 
sequence variants (ASVs). From these, bimeric, chimeric and singleton 
ASVs were removed using the nochim and de novo tools as indicated for 
DADA2. 

ASVs were assigned putative taxonomy to the closest match (Call-
ahan et al., 2017) from the custom curated and maintained reference 
databases (Unite 9.0 for fungal ITS (Abarenkov et al., 2023) and 
Greengenes v13.8 for bacterial 16S (Callahan, 2016)). All reads mapped 
to these reference databases were kept if identifiable to Kingdom, and 
those which were not identifiable at a Kingdom level or identified to the 
wrong Kingdom were considered unknown reads and were removed for 
downstream analyses. 

Fungal ITS ASVs were designated into functional categories based on 
their putative life history following ecological guild assignment sensu 
FUNGuild (Nguyen et al., 2016). Only functional categories with prob-
able confidence or higher were retained. Guilds used in this study 
included ectomycorrhiza (ECM), arbuscular mycorrhiza (AM), ericoid 
mycorrhiza (ericoid), saprotroph, endophyte, or pathogen. Where guild 
membership was complex (e.g. ECM and plant pathogen), ASVs were 
assigned membership in each relevant group. Bacterial 16S nutrient 
cycling functional groups were assigned using FAPROTAX (Louca et al., 
2016a; Louca et al., 2016b) and the microeco package (Liu et al., 2021) 
to functions of ecological importance; carbon, nitrogen, sulphur, man-
ganese, and hydrogen recyclers as well as cyanobacteria. Raw molecular 
data are stored at the Sequence Read Archive (SRA) curated by NCBI 
under the accession number PRJNA1014222. 

The sequence table and taxonomic assignment generated in DADA2 
were combined with a sample matrix using the package phyloseq 
(McMurdie and Holmes, 2013) for comparisons at the site and sample 
level. In phyloseq, negative control sequences were removed and using 
the prune_taxa tool. Only ASVs with >5 reads in 5 % of samples were 
retained for relative abundance statistical analysis. Read numbers were 
normalised to sample counts as a measure of relative abundance. 

2.5. Statistical analysis 

Our overarching aim was to quantify taxonomic and functional 
change in microbial communities in response to the hotter drought and 
wildfire and vegetation covariates. To achieve this, we present data and 
analyses at the community level and for functional groups within the 
microbial community with bacterial and fungal communities analysed 
separately. We undertook community analysis followed by regression of 
rarefied richness, diversity, and functional group relative abundance. 
We used indicator species analysis to identify ASVs associated with 
combinations of drought and fire. Finally, we conducted simple 
regression of forest stand metrics in relation to fungal and bacterial 
community indices (richness, diversity) to reveal above and below 
ground relationships. 

All analyses were performed in the R 4.1.0 programming language (R 
Core Team, 2017) and RStudio v4.1.0 (RStudio Team, 2021) using 
phyloseq, glmmTMB (Brooks et al., 2017) and VEGAN (Dixon, 2003; 
Oksanen et al., 2017). Results were visually displayed using ggplot2 
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(Wickham, 2011). 

2.6. Community metrics and analysis 

Shannon diversity and observed species richness of ASVs were 
calculated using the ‘estimate_richness’ function in phyloseq using all 
ASV counts. To assess compositional shifts in the microbial community 
in response to wildfire and hotter drought, non-metric dimensional 
scaling (NMDS) based on Bray–Curtis dissimilarity was carried out on 
relative abundance data generated from the ASV species matrix. To 
support the NMDS analysis and quantify differences in community 
composition among groups, we used permutational multivariate anal-
ysis of variance (PERMANOVA) using the ‘adonis’ function (Anderson, 
2001) in VEGAN (999 permutations) to test for differences in commu-
nity composition to wildfire and hotter drought and their interaction. 

To test the effect of drought, fire, and their interaction, generalized 
linear mixed effect models were applied to community metrics (richness 
diversity) and relative abundance (overall and by functional group). The 
experimental unit was each plot, with a random effect of site (four plots 
per site) and fixed effects of drought, fire and their interaction using a 
Gaussian distribution (richness, diversity) or beta error distribution 
(relative abundance of functional groups). Data for arbuscular mycor-
rhizal fungi and sulphur recycling bacteria were too sparse for regres-
sion. We found no evidence of model violations after visually inspecting 
model residuals. We report effect estimate, standard error, t-value 
(richness, diversity), z-value (relative abundance) and p-value alongside 
means and 95 % confidence intervals. 

To identify ASVs associated with each unique condition we used an 
indicator species analysis with function multipatt in R package indic-
species (De Cáceres et al., 2010). To supplement our understanding of 

changes in relative abundance, we followed the approach of Treseder 
et al. (2016), calculating the change in frequency of occurrence for each 
functional group. We then calculated the percent change in occurrence 
with treatment. ASVs not occurring in either member of a pairwise 
contrast were excluded. 

2.7. Above-ground vegetation and microbial relationships 

To examine evidence for a relationship between microbial commu-
nities and above-ground vegetation, we conducted simple linear 
regression using microbial richness and diversity as response variables 
and forest stand metrics (live canopy cover, live canopy height, total 
basal area, live basal area, quadratic mean diameter) as reported in 
Walden et al. (2023). These simple linear correlations were calculated 
and are reported. Statistically significant correlations (p < 0.05) were 
taken as evidence of an association between above and belowground 
dynamics. 

3. Results 

3.1. Richness and Shannon diversity 

Filtering resulted in 2,228,833 fungal sequences across 3821 ASVs in 
ITS and 3,520,253 bacterial sequences across 34,828 ASVs in 16S. 
Fungal phyla were Ascomycota (52.9 %), Basidiomycota (45.3 %), and 
Mucoromycota (1.6 %) with all other accepted phyla found in abun-
dances of <1 % (Fig. 2A)]. Most common genera included Oidiodendron 
(11 %), Inocybe (10 %), Sebacina (5 %), Cortinarius (5 %). Bacterial phyla 
were found in more diverse frequencies, consisting of Proteobacteria 
(31.4 %) and Actinobacteriota (29.8 %) followed by Acidobacteriota 

Fig. 2. Percentage average abundance of (A) fungal phyla, and (B) bacterial phyla, for sites unburnt and burnt by wildfire (unburnt and burnt) and affected by 
drought intensity (low drought and high drought) in the Northern Jarrah Forest, southwestern Australia. 
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(13.4 %). All other phyla were found in abundances of below 4 % with 1 
% unknown (Fig. 2B). Most common bacterial families included Aceto-
bacteraceae, Acidobacteriaceae, and Acidothermacaeae. 

The most common fungal phylum at burnt sites was Ascomycota 
while at unburnt sites it was Basidiomycota (Fig. 2A). Burnt sites con-
tained higher abundance of the bacterial phyla Actinobacteriota, and 
unburnt sites had more Acidobacteriota (Fig. 2B). 

Fungal richness and Shannon diversity decreased with increasing 
disturbance (Fig. 3A,B). Wildfire burnt sites had lower fungal species 
richness and diversity compared to unburnt sites (Fig. 3A; Table S1 
(estimate = − 82.9, SE = 19.5, t = − 4.3, p = 0.002 and − 0.45 (0.22), t 
= − 2.1, p = 0.04 respectively). Bacterial richness and Shannon diversity 
did not respond to drought or fire with no statistical evidence of dif-
ferences among groups (Fig. 3C,D, Table S1). 

3.2. Community composition 

Disturbance type had a significant impact on fungal and bacterial 
community composition. The NMDS matrices of ASVs by sample unit 
had a two-dimensional solution with a stress of 0.214 and 0.143 
respectively. Composition of the fungal community in the burnt sites 
was different from unburnt sites, and there was a difference between low 
drought and high drought (Fig. 4A) (ANOSIM, R = 0.534, p ≤0.001). 
Community composition of bacteria had a similar, but not as pro-
nounced, pattern as the fungal community. Within both wildfire and 
unburnt sites low and high drought intensity sites had a significantly 
different bacterial community composition (ANOSIM, R = 0.624, p 
≤0.001) (Fig. 4B). 

3.3. Indicator species 

We found significant indicators across fungi (51) and bacteria (745) 
for each combination of the treatments (Fig. 5). Similar patterns were 
evident across fungi and bacteria with the largest numbers of indicator 
“species” (ASVs) in the high drought category (when combining burnt 
and unburnt) with no indicators associated with unburnt, low drought 
plots. For fungi, burnt attracted 2.5× more indicators than unburnt but 
the pattern was more ~1:1 in bacteria (when comparing burnt vs un-
burnt). For bacteria, drought was far more important. 

3.4. Functional groups 

For fungi, the most consistent pattern was a negative wildfire and 
drought interaction effect (Fig. 6, Table S1). Overall abundance and 
ectomycorrhizal fungi, ericoid mycorrhiza, other saprotrophs, and other 
pathogens all possessed a negative drought and wildfire interaction 
(Fig. 6, Table S1). Overall abundance showed a marginally positive 
impact of wildfire while drought was associated with lower relative 
abundance of leaf saprotrophs and higher relative abundance of other 
saprotrophs. Most functional groups did not respond significantly 
(Fig. 6, Table S1). 

In contrast to fungal functional groups, the interaction of drought 
and fire was not significant for overall abundance and only for one of the 
five analysed bacterial functions (positive effect with manganese re-
cyclers; Fig. 7, Table S1). Overall relative abundance of bacteria was 
significantly higher in drought impacted plots (0.24, SE = 0.06, t = 3.9, 
p < 0.001; Table S1) and nitrogen and hydrogen recyclers also had 

Fig. 3. Fungal species richness (A) and Shannon diversity (B), and bacterial species richness (C), and Shannon diversity (D) for sites unburnt and burnt by wildfire 
(unburnt and burnt) and affected by drought intensity (low drought and high drought) in the Northern Jarrah Forest, southwestern Australia. Values are means and 
95 % confidence intervals. Fungal richness and diversity declined with increasing disturbance while bacterial richness and diversity were stable. 
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higher relative abundance in drought impacted plots (Fig. 7, Table S1). 
No bacterial groups responded to fire alone (Fig. 7). 

3.5. Above-ground vegetation and microbial relationships 

Fire altered vegetation substantially more than drought (Fig. 8B, D, 

F, H) with metrics differing between treatments based on lack of overlap 
of 95 % confidence intervals. Unburnt sites were characterised by higher 
live canopy height, live basal area, and canopy cover compared with 
burnt sites (Fig. 8A, C, E). Drought-affected sites that had been burnt had 
the lowest canopy cover of all treatments (Fig. 8C). Pearson correlation 
coefficients for bacterial richness and Shannon diversity relative to stand 

Fig. 4. Bray Curtis dissimilarity NMDS for sites unburnt and burnt by wildfire (unburnt and burnt) and affected by drought intensity (low drought and high drought) 
for fungi (A) and bacteria (B) in the Northern Jarrah Forest, southwestern Australia. Ellipses indicate 95 % clustering. Both fungal and bacterial communities 
separated markedly with fire and occupied less graph space than drought alone. 

Fig. 5. Indicator species for fungal and bacterial ASVs for sites unburnt and burnt by wildfire (unburnt and burnt) and affected by drought intensity (low drought and 
high drought) in the Northern Jarrah Forest, southwestern Australia. For fungi, the combination of drought and wildfire produced the greatest number of indicator 
taxa, while for bacteria drought was more important. 
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metrics (max height, live height, quadratic mean diameter live stems, 
canopy cover, live basal area, total basal area) were relatively small and 
ranged from 0.11 to 0.27 (p values >0.05; Table S2), except for 
quadratic mean diameter, all stems, which had a strong relationship 
with bacterial richness. For fungal richness and Shannon diversity, 
values ranged from 0.05 to 0.51 with strongest relationships between 
observed richness and live height (r = 0.51, p < 0.001; Fig. 8G). All 
correlation coefficients and their p-values are reported in Table S2. 

4. Discussion 

We have shown that microbial communities in a Mediterranean-type 
forest respond significantly to wildfire and drought, and particularly in 
combination. Specifically, fungal richness and Shannon diversity 
decreased with increasing disturbance, with wildfire having a significant 
impact. The fungal community was more affected by wildfire and 
drought than the bacterial community. We found distinct responses in 
community composition and functional groups, with a lower abundance 
of several key mycorrhizal fungal functional groups in drought plus 
wildfire-affected plots. There was a higher abundance of nitrogen and 
hydrogen bacterial recycler groups in drought-affected plots. Given that 
southwestern Australia is predicted to have an increased frequency and 
intensity of droughts and fire weather (Williams et al., 2009; Hope et al., 
2015; BOM/CSIRO, 2020), our study provides important and timely 
insights into how microbial communities could respond to these 
disturbance events in this region. 

4.1. Drought-affected sites 

Drought alone did not significantly change the richness or Shannon 
diversity of microbial communities in our study. Consistent with our 
study, Zhou et al. (2020) found reduced precipitation does not signifi-
cantly change bacterial richness. Other studies also show little change in 
bacterial richness in response to drought, suggesting that the bacterial 
community could be less sensitive to drought than fungi, which could be 
related to fungal communities' dependence on non-extreme moisture 
conditions (Hawkes et al., 2011; Bastida et al., 2017), though see Yuste 
et al. (2011) for fungi coping better with drought compared with bac-
teria. An alternative proposition, given our data were collected four 
years after fire and eight years after drought, is that bacterial commu-
nities respond and recover rapidly following moisture pulses compared 
with their slower growing fungal counterparts (Cregger et al., 2012). 

Drought-affected sites, however, were associated with the largest 
numbers of indicator species (ASVs) for both fungi and bacteria. No 
indicator species were associated with unburnt, low drought sites. 
Fungal indicator species for drought only included Talaromyces taxa, 
which were also found in the drought treatment in a study of south-
western Australian Mediterranean-type shrubland (Birnbaum et al., 
2019). Talaromyces spp. are known to be thermophilic and thermoto-
lerant saprotrophs (Houbraken et al., 2012; Bowd et al., 2023). Drought 
also significantly increased the abundance of the functional group of 
other saprotrophs. In our previous study of drought-affected Northern 
Jarrah Forest sites, saprotrophs were also favoured under drought con-
ditions, possibly due to dead roots in the soil associated with drought- 
affected trees (Hopkins et al., 2018). Saprotrophs are critical for 

Fig. 6. Fungal functional groups for sites unburnt and burnt by wildfire (unburnt and burnt) and affected by drought intensity (low drought and high drought) in the 
Northern Jarrah Forest, southwestern Australia. Values are means and 95 % confidence intervals. There was little evidence for an effect of drought alone, but the 
combination of drought and fire had a significant negative effect on abundance of four functional groups. 
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decomposition of litter and soil organic matter for nutrient redistribu-
tion (Baldrian et al., 2023) thus it is reasonable that their abundance 
would be higher in drought-affected plots. 

Drought increased the abundance of bacterial recyclers, specifically, 
hydrogen and nitrogen recyclers. Hydrogen recyclers could be at higher 
abundance due to an increase in soil pH. In a global meta-analysis of 
peer-reviewed studies (2000–2019, 734 observations from 107 pub-
lished studies) that examined the effects of drought on terrestrial pro-
ductivity, drought stress increased the soil pH by 4.8 % (0.2 to 9.4 %; p 
= 0.04) (Wang et al., 2021). The same study indicated that soil nitrogen 
exhibited no significant responses to drought stress (p > 0.05). However, 
another meta-analysis on field studies that used rain-out shelters to 
reduce precipitation (37 studies), suggested that extractable NH4+
increased by 25 % overall with precipitation reduction; and NH4+ also 
increased significantly with increasing magnitude of precipitation 
reduction (Homyak et al., 2017). Clearly more work is needed to un-
tangle the direct effects of drought, the implications for soil character-
istics, and the indirect effects on bacterial communities. 

4.2. Wildfire-affected sites 

Wildfire alters the diversity and composition of microbial commu-
nities, directly, and indirectly, but how those changes are expressed are 
highly diverse and dependent on a range of factors including wildfire 
severity, ecosystem type, and disturbance history (Certini et al., 2021). 
In a review of multiple ecosystems, fire types and sampling methods, 
Dove and Hart (2017) showed that soil fungal communities (species 
richness and mycorrhizal colonisation) were adversely affected by fire. 
Sites in our study affected by wildfire four years previously, had lower 

fungal richness and Shannon diversity compared with unburnt sites. A 
study from black spruce (Picea mariana) dominated boreal forest, 
northwest Canada, reported a similar pattern, where high fire severity 
caused a decline in richness and diversity of fungi one year after wildfire 
(Day et al., 2019). In a study of responses of fungal communities to fire 
in a dry sclerophyll eucalypt forest in south-eastern Australia, Bowd 
et al. (2023) also found that a short time (three years) since fire was 
associated with a decline in total fungal richness relative to a long time 
period (>26 years). We found burnt sites were dominated by Ascomy-
cota and unburnt sites by Basidiomycota. This shift from the relative 
dominance of Ascomycota fungi in recently disturbed systems, to a 
gradual increasing abundance of Basidiomycota fungi over time post- 
fire disturbance has been noted in several studies (Sun et al., 2015; 
Ammitzboll et al., 2022) and may be related to Ascomycota possessing 
more genes associated with nutrition and carbohydrate metabolism than 
Basidiomycota, and hence giving them a higher stress-tolerance and 
competitive ability (Egidi et al., 2019). However, detailed and repeated 
microbial and floristic surveys are needed to investigate these patterns 
further. 

Our study found a higher overall abundance of fungal functional 
types following wildfire, but no significant patterns in any individual 
functional type. The post-fire resumption of mycorrhiza from hyphal 
regrowth from root segments or viable propagules is often relatively fast, 
on the order of months (Alem et al., 2020), and mycorrhizal succession 
does occur over time (Treseder et al., 2004). In boreal forest in Alaska, 
for example, that burned 3, 15, 45, and 80 years earlier, dominant 
mycorrhizal groups shifted from AMF to ECM as succession progressed 
as fire did not noticeably reduce the abundance of AMF in contrast to 
ECM colonisation, which took 15 years to return to pre-fire levels 

Fig. 7. Bacterial recycler groups for sites unburnt and burnt by wildfire (unburnt and burnt) and affected by drought intensity (low drought and high drought) in the 
Northern Jarrah Forest, southwestern Australia. Values are means and 95 % confidence intervals. Hydrogen and nitrogen recyclers responded positively to drought, 
and manganese recyclers to the interaction between drought and wildfire. 
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(Certini et al., 2021). 
Regarding bacteria, our burnt sites had a high abundance of Acti-

nobacteriota (e.g., families: Mycobacteriaceae, Conexbacteraceae, 
Acidothermaceae, Pseudocardinaceae) and unburnt sites had more 
Acidobacteriota (e.g., Bryobacteraceae, Solibacteraceae). A lower acid-
obacteriota abundance in burnt areas is similar to published work from a 
range of forest ecosystem types. Bowd et al. (2022), found that recently 
burnt E. pilularis forest in southeastern Australia hosted lower abun-
dances of Acidobacteria. A fire-induced decrease in Acidobacteria was 

also recorded by Rodríguez et al. (2018) in Mediterranean forest eco-
systems at 2–3 years post-burn. Adkins et al. (2020) assessed how three 
years after fire, Acidobacteria relative abundance was negatively related 
to burn severity in a Sierra Nevada (southwestern US) mixed conifer 
forest (unburnt sites 11.06 % vs burnt sites 9.22 %). Recovery post-fire 
has been recorded as strongest in phyla such as Actinobacteria, Pro-
teobacteria and Firmicutes – a study three-months post-wildfire in a 
E. melliodora/ E. albens woodland in southeastern Australia showed that 
although fire has a significant effect on the bacterial community, 

Fig. 8. Forest variables (A) mean live canopy height (m), (C) mean canopy cover (%), (E) mean live basal area (BA m2ha− 1), (G) observed ASV fungal richness and 
live tree height (m), and photos showing examples from the study sites in the Northern Jarrah Forest, southwestern Australia, showing plots that were: (B) unburnt/ 
low drought intensity, (D) unburnt/ high drought intensity, (F) burnt by wildfire/low drought intensity, and (H) burnt by wildfire/high drought intensity. Values are 
means and 95 % confidence intervals. 
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recovery was rapid and showed the microbial community was largely 
fire-tolerant (Prendergast-Miller et al., 2017). Actinobacteria has also 
shown strong post-fire recovery post-fire in chaparral in southern Cali-
fornia, potentially favoured by an increase in soil pH, or increase in 
nitrogen and phosphorus availability (Pulido-Chavez et al., 2023). 

4.3. Drought and wildfire-affected sites 

Multiple disturbances, how disturbance regimes are changing, and 
the profound consequences of these for ecosystems is receiving 
increased interest (Turner, 2010; Buma, 2015; Agne et al., 2022; Davis 
et al., 2023). For example, how reduced rainfall due to climate change 
might affect the post-fire community is poorly understood in terms of the 
soil microbial community, which plays such an important role in the 
recovery of post-fire ecosystem functioning (Hinojosa et al., 2019). 
Rillig et al. (2019) reviewed over 1000 papers and examined the effects 
of an increasing number of global change factors (including temperature 
and water availability) on microbial communities, and found these 
factors caused increasing directional changes (e.g., a reduction in soil 
fungal ASV richness). In another study, it was shown that the combi-
nation of fire and drought disturbances can decrease soil total microbial 
biomass (Hinojosa et al., 2016). We found a monotonic decline in 
richness and Shannon diversity in the fungal community with increasing 
disturbance, while bacterial richness and diversity were relatively sta-
ble. The combination of drought and wildfire had a significant negative 
effect on the abundance of fungal functional types in general, and spe-
cifically, several main functional types. This pattern was particularly 
highlighted by a decrease in ECM and ericoid mycorrhizal fungi. 
Although not drought and fire per se, a study of drought and warming in 
the southwestern US using pinyon pine (Pinus edulis), found that the 
combined drought and warming treatment reduced the abundance and 
diversity of ECM more than either treatment alone (Gehring et al., 
2020). A longer-term reduction in ECM has implications, especially for 
seedling recruitment, if multiple disturbances continue to occur in the 
future. 

Other fungal saprotrophs and other fungal pathogens in our study 
were significantly reduced in abundance by the interaction of drought 
and wildfire. These types of saprotrophic fungi are important for the 
decomposition of dead organic matter, other fungi, dung or rotten wood 
on the forest floor, as well as some materials of animal origin (McMul-
lan-Fisher et al., 2011). However, high severity fires can reduce the 
quantity of available substrates (Robinson et al., 2008). In our study, the 
combination of a drought-induced canopy die-off, eight years earlier, 
and the high severity wildfire could have reduced the available sub-
strates that would normally be available to these types of saprotrophs. 
Reduced availability of substrates following wildfire leading to 
decreased abundance can also be applicable for pathogens, as seen in 
other studies, such as in Californian chaparral shrublands (Pulido-Cha-
vez et al., 2023). 

A significant response of fungal functional types to drought plus 
wildfire could also reflect underlying plot differences; similar drought- 
affected sites in the same forest as in this study are associated with 
shallow, rocky soils with lower water holding capacity, and located close 
to rock outcrops, at higher elevations, on steep slopes, and in xeric areas 
(Brouwers et al., 2013; Andrew et al., 2016; McGrath et al., 2023). 
Furthermore, drought-affected sites are characterised by the absence of 
a common drought-vulnerable midstorey species, Banksia grandis, and 
altered overstorey structure, including previous dieback (Matusick et al., 
2013; Steel et al., 2019). These sites may thus have different microsite 
conditions, such as temperature (Dundas et al., 2021). In this context, it 
is of course, difficult to separate drought from other plot characteristics, 
and thus more controlled drought experiments are needed to investigate 
results seen here. More generally, understanding the effects of multiple 
disturbances such as drought plus wildfire remains an important chal-
lenge for microbial ecologists, and addressing it requires deconstructing 
compounded disturbances into their constituent drivers: nature, 

intensity, frequency, and chronology (Philippot et al., 2021). 
Our study also found a significant increase in the abundance of 

manganese bacterial recyclers with the interaction between drought and 
wildfire. This could be due to an increase in water-soluble manganese, 
which can increase after soil is heated to temperatures of 200 ◦C and 
above (Chambers and Attiwill, 1994). In that study, which examined 
post-fire conditions in Eucalyptus regnans forest, southeastern Australia, 
heating to only 100 ◦C caused no change in the concentration of man-
ganese. In our study, the combination of drought site characteristics (e. 
g., shallow soils) may have made soil temperatures at these sites more 
extreme during wildfire, however, detailed studies will be needed to 
delve into this pattern further. In the Chambers and Attiwill (1994) 
study, the increase in manganese concentration was short-lived and 
decreased to control levels within two months; the authors postulated 
that this was possibly due to the rapid increase in the microbial 
population. 

4.4. Future of forest functioning 

Belowground microbial communities, such as mycorrhizal fungi, 
perform a wide range of critical ecosystem functions in forests (Van der 
Heijden et al., 2015). Disturbances such as drought and wildfire, and 
their interactions, can have multiple and complex implications for these 
ecosystem functions, including carbon cycling and storage and decom-
position rates (Cregger et al., 2012; Bowd et al., 2022), as well as flow on 
effects on forest ecosystem resistance and resilience. Such implications 
are particularly concerning in regions such as southwestern Australia, 
which, under future climate scenarios, is predicted to experience further 
chronic changes in precipitation and temperature (Hope et al., 2015; 
BOM/CSIRO, 2020; DWER, 2021), extremes such as droughts (Hope 
et al., 2015) and heatwaves (DWER, 2021), and increased severity of fire 
weather and likelihood of increased frequency of wildfire (Williams 
et al., 2009). Given this broad and increasing range of potential dis-
turbances on forest ecosystems, and their predicted increased frequency, 
the probability of multiple and interacting disturbances will also in-
crease. In this study, we have shown a decrease in the abundance of 
mycorrhizal fungi with increasing disturbance. Whether this will lead to 
a decreased ability to support adult plants, as well as regeneration, is 
unknown. Only repeated monitoring of health and regeneration of these 
sites over longer time periods, across multiple and interacting distur-
bances, as well as investigations into the ability for these soils to directly 
support regeneration, may provide answers. 

In conclusion, this study investigated the fungal and bacterial com-
munities in a Mediterranean climate type, dry sclerophyll eucalypt 
forest that had experienced a hot drought eight years ago, and wildfire 
four years ago. We found a monotonic decline in richness and diversity 
in the fungal community with increasing disturbance, with the greatest 
changes resulting from the combination of drought and wildfire in two 
thirds of functional groups. There were distinct responses in community 
composition and putative functional groups to the disturbance types, 
with key mycorrhizal fungi (e.g., ECM, Ericoid), fungal saprotrophs, and 
fungal pathogens found in lower abundance at sites affected by the 
combination of drought and wildfire. Forest stand metrics (live tree 
height and canopy cover) were strongly correlated with fungal richness, 
suggesting above and below ground correspondence. Clearly microbial 
communities are affected by drought and wildfire in combination, which 
has implications for forest health, recruitment, and ecosystem function 
and forest persistence more generally. 
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